Towards *Terminator* **2**:

Self-stabilizing and Distributed Topological Graph Linearization

Stefan Schmid

Joint work with: Dominik Gall Riko Jacob Andrea Richa Christian Scheideler Hanjo Täubig

Wroclaw Information Technology Initiative (2008)

Goal: Terminator 2!

Towards Terminator 2:

Self-stabilizing and Distributed Topological Graph Linearization

Stefan Schmid

Joint work with: Dominik Gall Riko Jacob Andrea Richa Christian Scheideler Hanjo Täubig

Wroclaw Information Technology Initiative (2008)

Self-Stabilization (1)

- Important concept in fault-tolerance
- A self-stabilizing system (eventually) ends up in a correct state...
- ... independently of the initial state.

"All the designs I was familiar with were not self-stabilizing in the sense that when once (erroneously) in an illegitimate state, they could – and usually did! – remain so forever."

E. W. Dijkstra (1974)

- Model: Adversary can disturb the computations (shared variables in system state) arbitrarily
- Once the changes are over, algorithm converges towards desired state



Towards Terminator 2:

Self-stabilizing and Distributed Topological Graph Linearization

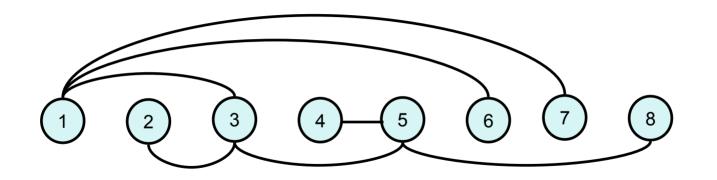
Stefan Schmid

Joint work with: Dominik Gall Riko Jacob Andrea Richa Christian Scheideler Hanjo Täubig

Wroclaw Information Technology Initiative (2008)

Graph Linearization

- INPUT: Arbitrary connected graph
 - nodes have arbitrary IDs



Graph Linearization

• OUTPUT: Sorted graph

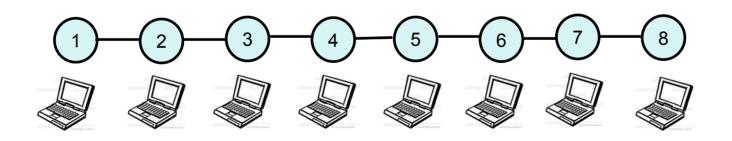
Towards *Terminator 2*:

Self-stabilizing and **Distributed** Topological Graph Linearization

Stefan Schmid

Joint work with: Dominik Gall Riko Jacob Andrea Richa Christian Scheideler Hanjo Täubig

Wroclaw Information Technology Initiative (2008)



- Every node runs its own program:
 - each pair of nodes (u,v) shares a Boolean variable e(u,v) ("edge")
 - program of the node consists of variables and actions
 - an action is of the form:

<name> : <guard> => <commands>

- Guard: predicate over the local and shared variables of node
- Commands: sequence of commands involving any local or shared variables of the node itself or ist neighbors
- An action is enabled if guard is true

Towards Terminator 2:

Self-stabilizing and it it it it is the stabilizing and it is the stabilized Topological Grad hearization

Stefan Schmid

Joint work with Dominik Gall **Riko Jacob** Andrea Richa Christian Scheideler Hanjo Täubig

Wroclaw Information Technology Initiative (2008)

- Self-stabilizing algorithm: terminates eventually
- But what about convergence time?
- Analysis of synchronous model
 total number of rounds (after adversarial change) = execution time
- What can be done in one round?

For scalability reasons, a node should not be involved in too many changes per round!

Talk Outline

- **1. Two Distributed Algorithms for Graph Linearization**
- 2. Model for Time Complexity of Convergence
- 3. Analysis and Simulation
- 4. Conclusion

Two Algorithms

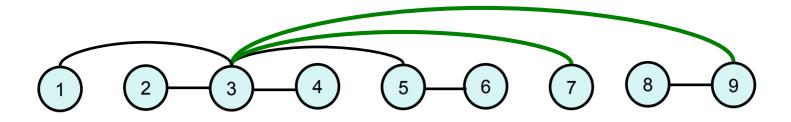
Basic Linearization Step

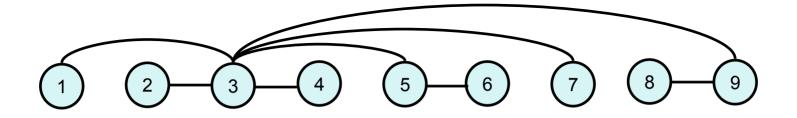
• A basic linearization step involves a node triple

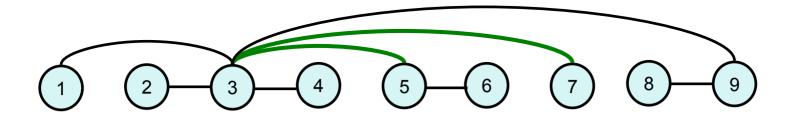
• Observe: Connectivity is preserved

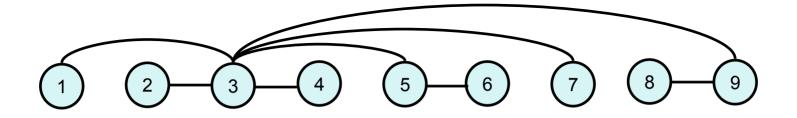
linearize left(v, w): $(v, w \in u.L \land w < v < u) \rightarrow e(u, w) := 0, e(v, w) := 1$ **linearize right**(v, w): $(v, w \in u.R \land u < v < w) \rightarrow e(u, w) := 0, e(v, w) := 1$

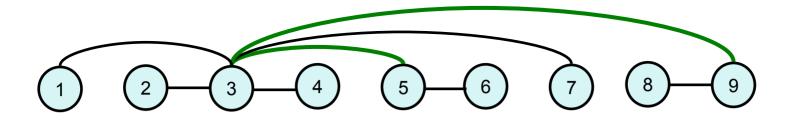
• LIN_{max} proposes the *furthest* triple on each side (for node *u*)

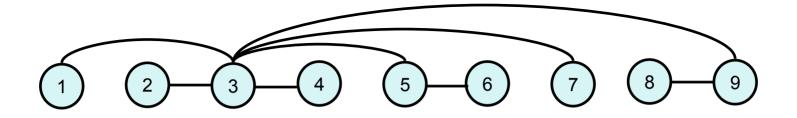


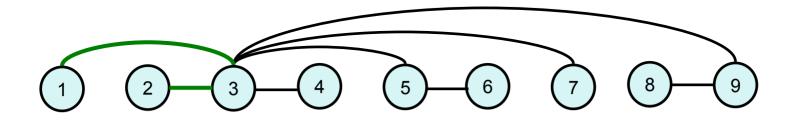


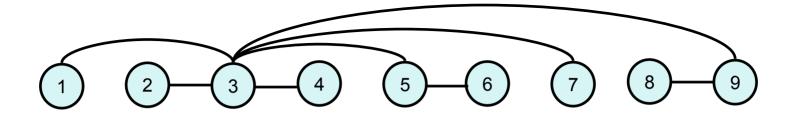


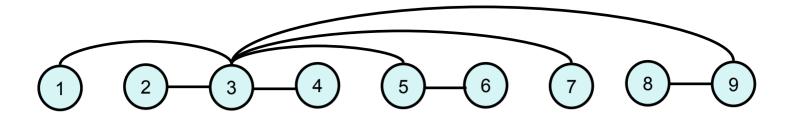


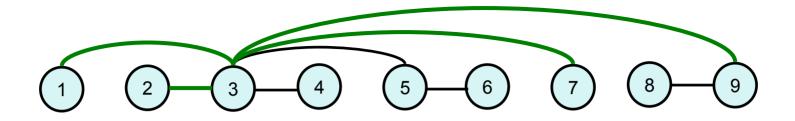






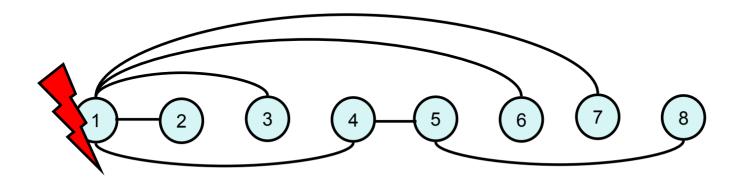


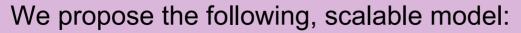




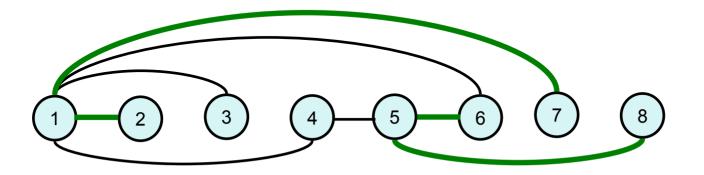
Time Complexity Model

- There are different models for what can happen in one round!
- For example: Every node can fire one action per round
- Problem: Nodes can be involved in many changes
 Therefore, this solution does not scale!





- Let V(A) be the nodes involved in an action A
- Two actions A and B are independent if $V(A) \cap V(B) = \{\}$
- Only an independent set of actions is fired per round



- Nodes propose different enabled actions to the scheduler...
- ... which one to choose?

Worst-case scheduler: chooses independent set of enabled actions which maximizes the runtime
Best-case scheduler: chooses independent set of enabled actions which minimizes the runtime
Randomized scheduler: chooses independent sets at random
Greedy scheduler: scheduler gives priority to nodes having a large degree

Analysis

- It turns out that already these simple algorithms are challenging!
- Overview of results:

Worst-case scheduler: LIN_{max} requires $\Theta(n^2)$ rounds LIN_{all} requires $O(n^2 \log n)$ rounds

Greedy scheduler: LIN_{all} requires O(n log n) rounds

Best-case scheduler:

 LIN_{max} and LIN_{all} require $\Theta(n)$ rounds

With degree cap (worst-case scheduler):

 LIN_{max} requires at most O(n²) and LIN_{all} at most O(n³) rounds

In Silico Experiments

- In reality, the runtimes are often close to linear (or even constant in "local graphs" where node i connects to nodes [i-k,i-k+1,...,i-1,i+1,i+2,...i+k])!
- LIN_{all} and LIN_{max} yield a similar performance

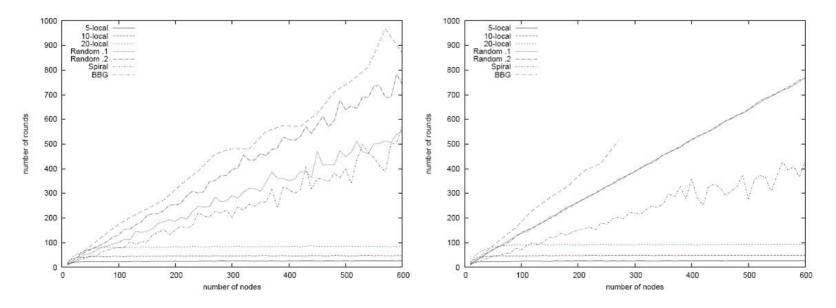


Figure 3: *Left:* Parallel runtime of LIN_{all} for different graphs under S_{rand} : two k-local graphs with k = 5, k = 10 and k = 20, two random graphs with p = .1 and p = .2, a spiral graph and a n/3-BBG. *Right:* Same experiments with LIN_{max} .

Stefan Schmid @ Wroclaw, 2008

Degree Evolution

- Maximum and average degree do not increase
- Rather, degrees are reduced quickly

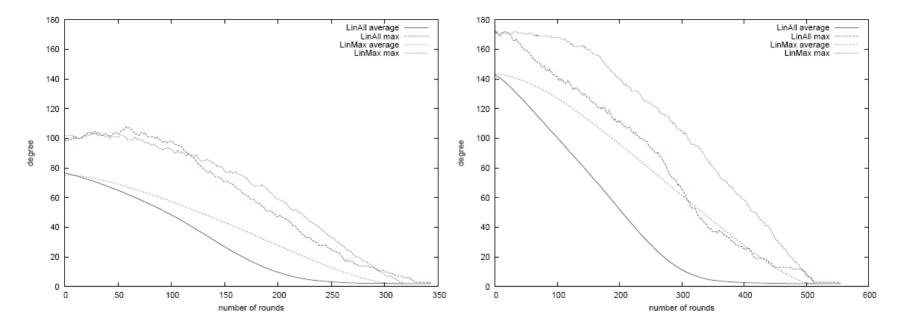
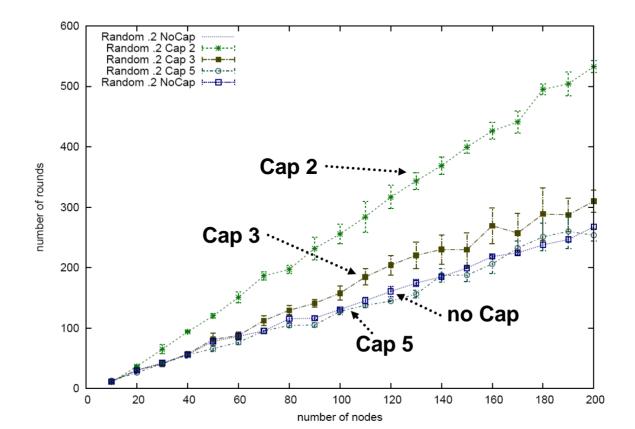


Figure 4: *Left:* Maximum and average degree during a run of LIN_{all} and LIN_{max} on a random graph with edge probability p = .1. *Right:* The same experiment on a random graph with p = .2.

Degree Cap Phenomenon

- It appears as a degree cap constraint can sometimes improve the runtime!
 - too small degree: blocks many options
 - however, small degree also forces execution on "good paths"



A Sample Analysis (1)

Theorem: Under a worst-case scheduler, LIN_{max} terminates after at most O(n²) single linearization steps.

Unfortunately, executions can be highly serial and hence the number of linearization steps is asymptotically equivalent to the numer of rounds!

Proof.

Consider the potential function

$$\Phi = \sum_{v \in V} \left[\left(2\zeta_l(v) - 1 \right) + \left(2\zeta_r(v) - 1 \right) \right] = \sum_{v \in V} 2(\zeta_l(v) + \zeta_r(v) - 1)$$

where $\zeta(v)$ is the length of the longest edge out of v to the left and right.

$$\Phi = \sum_{v \in V} \left[\left(2\zeta_l(v) - 1 \right) + \left(2\zeta_r(v) - 1 \right) \right] = \sum_{v \in V} 2\left(\zeta_l(v) + \zeta_r(v) - 1 \right)$$

Initially $\Phi_0 < 2 n^2$, as $\zeta_1(v) + \zeta_r(v) < n$ for each node *v*.

After round *i*, the potential is at most $\Phi_i < 2 n^2 - i$.

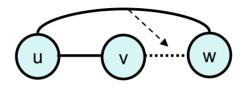
It most hold for any j that $\Phi_i > 0$, otherwise a node would be isolated.

Thus, the claim follows.

$$\Phi = \sum_{v \in V} \left[\left(2\zeta_l(v) - 1 \right) + \left(2\zeta_r(v) - 1 \right) \right] = \sum_{v \in V} 2(\zeta_l(v) + \zeta_r(v) - 1)$$

Why is $\Phi_i < 2 n^2 - i$ true?

Consider a right linearization step:



<u>Case 1</u>: If $\{u, w\}$ is also longest edge of w to the left.

We remove two longest edges of length $|\{u, w\}|$ from Φ .

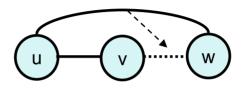
On the other hand, *u* may have a new longest edge $\{u, v\}$ to the right, *v* may have a new longest edge $\{v, w\}$ to the right, and *w* a new edge of length at most $|\{u, w\}|$ -1 to the left. Since $|\{u, w\}| = |\{u, v\}| + |\{v, w\}|$, it follows that

 $\Delta \Phi \leq (2 \cdot \mathrm{len}(\{u,v\}) - 1) + (2 \cdot \mathrm{len}(\{v,w\}) - 1) + (2(\mathrm{len}(\{u,w\}) - 1) - 1) - (4 \cdot \mathrm{len}(\{u,w\}) - 2) \leq -3$

$$\Phi = \sum_{v \in V} \left[\left(2\zeta_l(v) - 1 \right) + \left(2\zeta_r(v) - 1 \right) \right] = \sum_{v \in V} 2(\zeta_l(v) + \zeta_r(v) - 1)$$

Why is $\Phi_i < 2 n^2 - i$ true?

Consider a right linearization step:



<u>Case 2</u>: If $\{u, w\}$ is not longest edge of w to the left.

We remove longest edge of length $|\{u, w\}|$ from Φ .

On the other hand, *u* may have a new longest edge $\{u, v\}$ to the right, *v* may have a new longest edge $\{v, w\}$ to the right. In this case

$$\Delta \Phi \le (2 \cdot \operatorname{len}(\{u, v\}) - 1) + (2 \cdot \operatorname{len}(\{v, w\}) - 1) - (2 \cdot \operatorname{len}(\{u, w\}) - 1) \le -1$$

Another Sample Analysis (1)

Theorem: Under a greedy scheduler, LIN_{all} terminates after at most O(n log n) rounds.

Greedy scheduler: In each round, nodes are sorted w.r.t. remaining degree (remove fired triples with incident edges). Scheduler picks node v with largest degree, and schedules triple of v (to the larger degree side) with most distant neighbors.

Proof. Consider the potential function

$$\Psi = \sum_{e \in E} \operatorname{len}(e)$$

```
Initially: \psi_0 < n^3
In the end: \psi = n-1
```

We will show that in each round, potential ψ is multiplied by a factor of at most 1-1/(24 n). This implies the claim.

This implies the claim?

Lemma 3.4. Let Ξ be any positive potential function, where Ξ_0 is the initial potential value and Ξ_i is the potential after the *i*th round of a given algorithm ALG. Assume that $\Xi_i \leq \Xi_{i-1} \cdot (1 - 1/f)$ and that ALG terminates if $\Xi_j \leq \Xi_{stop}$ for some $j \in \mathbb{N}$. Then, the runtime of ALG is at most $O(f \cdot \log(\Xi_0/\Xi_{stop}))$ rounds.

Proof. From
$$\Xi_i \leq \Xi_{i-1} \cdot (1 - 1/f)$$
, it follows that $\Xi_j \leq \Xi_0 \cdot (1 - 1/f)^j$.
Now consider $j = f \cdot \ln \frac{\Xi_0}{\Xi_{stop}}$, which leads to (using $\ln(1 + x) \leq x$ for all $x > -1$)

$$\Xi_j \leq \Xi_0 \cdot \left(1 - 1/f\right)^{f \cdot \ln \frac{\Xi_0}{\Xi_{stop}}} = \Xi_0 e^{f \cdot \left(\ln \frac{\Xi_{stop}}{\Xi_0}\right) \cdot \ln \left(1 - 1/f\right)} \leq \Xi_0 e^{f \cdot \left(\ln \frac{\Xi_0}{\Xi_{stop}}\right) \cdot \left(-1/f\right)} = \Xi_0 e^{-\ln \frac{\Xi_0}{\Xi_{stop}}} = \Xi_{stop}.$$

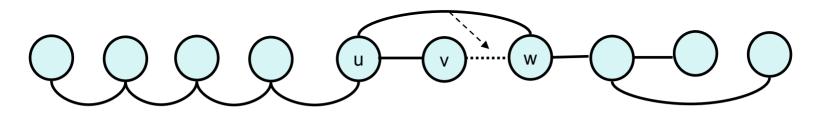
Another Sample Analysis (3)

Greedy scheduler: In each round, nodes are sorted w.r.t. remaining degree (remove fired triples with incident edges). Scheduler picks node v with largest degree, and schedules triple of v with most distant neighbors (to larger degree side).

Consider the potential function
$$\Psi = \sum_{e \in E} \operatorname{len}(e)$$

We will show that in each round, potential ψ is multiplied by a factor of at most 1-1/(24 n). This implies the claim.

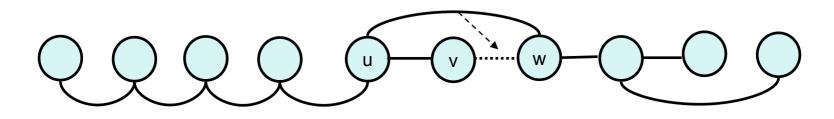
- Observe: firing a triple reduces potential ψ ...
- ... but other nodes will be blocked in this round.



• Idea: we want to estimate the amount of blocked potential.

Another Sample Analysis (4)

• Consider the following right-linearization step

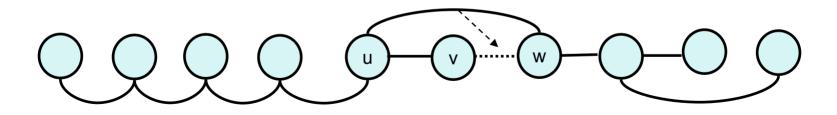


• Removing {u,w} and adding {v,w} reduces the potential by at least

dist(u,w)-dist(v,w) = dist(u,v)

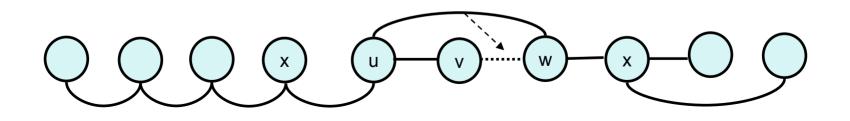
• Since the greedy scheduler takes larger degree side:

 $dist(u,v) \ge deg(u)/2 - 1 \ge deg(v)/4$



- Thus, potential reduced in one step by at least deg(u)/4
- How much potential is **blocked**?
- Consider remaining components after removing triple
- Consider neighbor *x* of *u*, *v* or *w*
 - if x is in ordered line component => blocked potential at most *n*+*n*

- if x is in different component => can still be linearized further (account for blocked component's potential later, only count link length potential: *n*)



- The amount of blocked potential is at most 6. deg(u) · n
 - since *u* has larger degree than *v* and *w*,
 - and since we have at most blocked potential $2 \cdot n$ per neighbor (*n* for component plus *n* for link to this neighbor)
- Thus, potential reduced by a factor at least $1-\Theta(1/n)$ per round.

QED.

Conclusion

- Most simple algorithms already have many interesting properties
- The quest for faster algorithms has already started!
- Besides linearization, is will be useful to construct alternative graphs in a self-stabilizing manner

Dziekuje!

Slides and papers at http://www14.informatik.tu-muenchen.de/personen/schmiste/

