Distributed Disaster Disclosure

Algorithms for Event Detection

Stefan Schmid

Collaborators: Bernard Mans Roger Wattenhofer

Wroclaw Information Technology Initiative (2008)

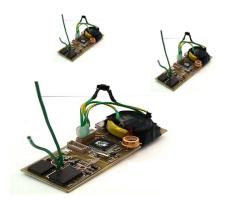
Motivation

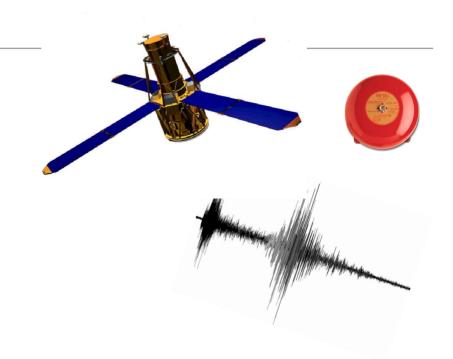
- Talk deals with natural disasters
 - Flooding, earthquakes, fires, etc.
- Need for fast disclosure
 - to warn endangered towns (shelter)
 - to inform helpers (e.g., firemen)

Our focus: environmental monitoring and early warning systems

Today's Warning System

- Different kinds of warning systems
 - Satellites
 - Seismic sensors
 - Smoke detectors
 - etc.

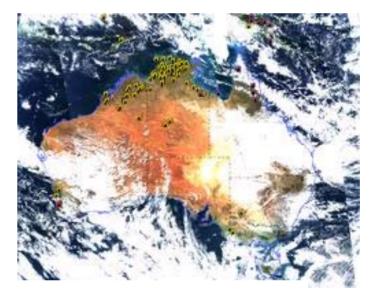




- Focus of this talk: Sensor nodes
 - Simple "computers" with sensors
 - Sensors measure physical properties (e.g., heat)
 - Basic wireless communication
 - Cheap, can be distributed over a certain area
 - Limited energy supply

Why Sensor Nodes?

- Example: SENTINEL
 - Australian bushfire monitoring system
 - Based on satellites
 - Provides timely information about hotspots
 - Satellites may miss certain heat sources, e.g., if there is smoke!
 - Sensor nodes can be a good alternative



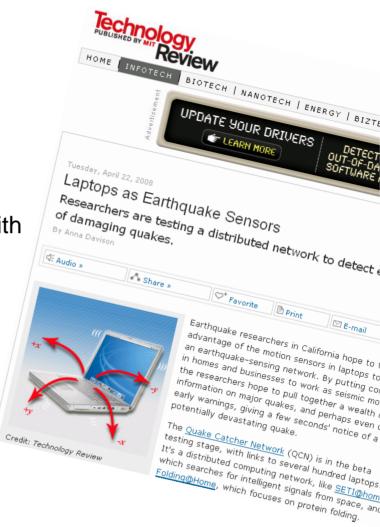
SENTINEL Disclaimer Agreement

Please note the limitations of the Sentinel Hotspots mapping system:

- 1. Under ideal conditions, the hotspots shown will have been detected 1-24 hours ago, depending on regional information received from the last satellite overpass.
- 2. The hotspot location on any map (no matter how detailed) is only accurate to at best 1.5 km.
- 3. The symbol used for the hotspot on the maps does not indicate the size of the fire.
- 4. Not all hotspots are detected by the satellites. Some heat sources may be too small, not hot enough, or obscured by thick smoke or cloud.
- 5. The satellites detect any heat source that is hotter than normal. As well as fires these may include industrial operations such as furnaces.

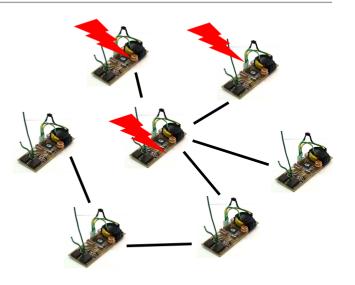
Example: A Distributed Sensor System

- Based on laptops
 not a classic sensor network
- Earthquake network
 - Jesse Lawrence (Stanford), Elizabeth Cochran (Riverside)
 - E.g., Apple laptops since 2005 are outfitted with accelometers, to protect harddrive when falling; or USB shake sensors
 - Fill the "gaps" between seismometers already in place in California.
- Goal: early warning of quakes based on gentle waves before the more brutal ones come. (E.g., stop high-speed trains)



Algorithmic Perspective

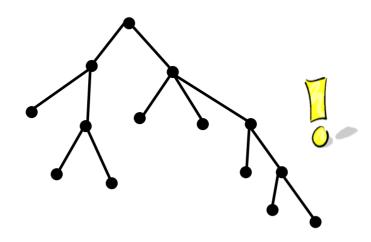
- Given a sensor network
 - Local event: connected subset of nodes senses event (simultaneously)
 - "connected event component"
- Goal of distributed algorithm
 - Determine total number of nodes which sensed the event (size of event component)
 - Algorithm should be fast
 - Output sensitive: In case of "small disasters", only a small number of messages is transmitted.
 - In case of large disasters, an alarm can be raised (e.g., priority = depends on event component size)



Model

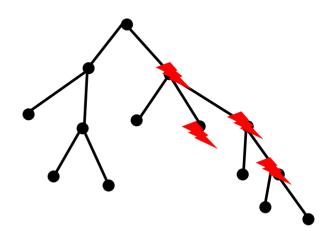
- Preprocessing of graph is allowed
 - Only unknown: subset of nodes where event will happen
- Evaluation
 - Time complexity: time needed until *at least one node* knows event component size s
 - Communication complexity: total number of messages sent
- Assumptions
 - All nodes sense event simultaneously
 - "Synchronous" environment (upper bound on message transmission time)
 - Nodes which did not sense event can also help to disclose the disaster by forwarding messages (on-duty model)
 - Only one event (can easily be generalized)

• Efficient disaster disclosure on undirected tree?



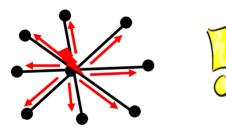
Time O(d), Messages O(s) d ... Diameter of component s ... Size of component => asymptotically optimal!

- Idea: in preprocessing phase, make the tree directed!
- At runtime: each node v immediately informs its parent in case of an event; subsequently, wait until all event-children counted the total number of event nodes in their subtrees



The Neighborhood Problem (1)

- A first challenge for general graphs: how can a node find out which of its neighbors also sensed the event? Called the neighborhood problem.
- Asking all neighbors is expensive: e.g., star graph where only center has event:



event component size s=1, but requires n-1 messages!

• Better idea: only ask neighbors with higher degree? Works for this example! But what about the complete graph? Lower bound n??

- Idea: construct a sparse neighborhood cover in preprocessing phase!
 - A set of node sets with certain properties
- Concretely: cover ensures small diameter ("local"), where at least one set includes t-neighborhood of each node (for parameter t), and where nodes are in not too many sets (small membership count)

Definition 2 (Sparse (k,t)-neighborhood Cover). [1] A(k,t)-neighborhood cover is a collection of sets (or clusters) of nodes $S_1, ..., S_r$ with the following properties: (1) $\forall v, \exists i \text{ such that } N_t(v) \subseteq S_i$, where $N_t(v) = \{u | dist_G(u, v) \leq t\}$, and (2) $\forall i, Diam(S_i) \leq O(kt)$.

A (k,t)-neighborhood cover is said to be sparse if each node is in at most $kn^{1/k}$ sets.

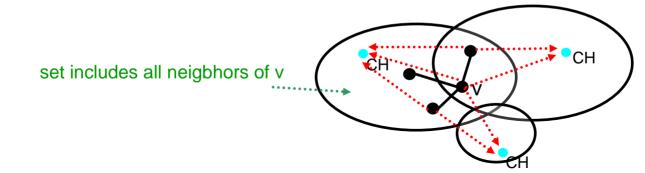
Theorem 1. [1] Given a graph G = (V, E), |V| = n, and integers $k, t \ge 1$, there is a deterministic (and distributed) algorithm which constructs a t-neighborhood cover in G where each node is in at most $O(kn^{1/k})$ clusters and the maximum cluster diameter is O(kt).

Stefan Schmid @ Wroclaw, 2008

• Solution with neighborhood cover:

- Preprocessing: compute (log n, 1)-neighborhood cover (clusters with log diameter, nodes in at most log sets, 1-neighborhoods included); for each set, define a cluster head (CH) (e.g., node with smallest ID), and compute shortest paths to CH

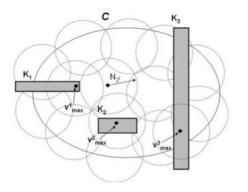
- Runtime: Event node informs all its cluster heads, which will reply with corresponding neighbor list



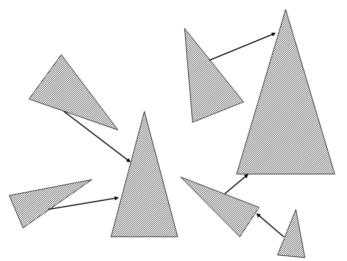
- Analysis (of neighborhood problem only):
 - Time O(log n) and O(s polylog(n)) messages
 - Small cluster diameter ensures fast termination
 - Small membership count / sparseness ensures low message complexity

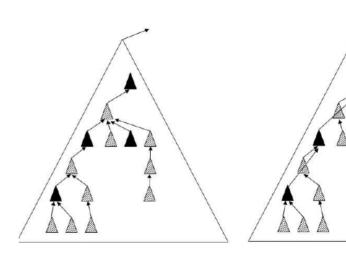
Disaster Disclosure on General Graphs

- How to compute the event component size in general graphs?
- Algorithm 1: Hierarchical network decomposition



• Algorithm 2: Merging trees and pointer jumping





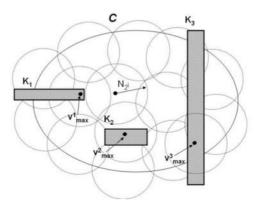
Hierarchical Network Decomposition (1)

- Use exponential hierarchy of covers: D₁ = (log n, 1), D₂ = (log n, 2), D₃ = (log n, 4), ..., D_i = (log n, 2ⁱ), neighborhood increases exponentially
 - diameter also increases, sparseness remains logarithmic
 - then: CHs and shortest paths
- Runtime:
 - First all event nodes in active state
 - Contact CHs to learn 1-neighborhood (cover log n, 1)
 - Then, go to larger decompositions iteratively
 - Active nodes inform CHs about event component K part they already know
 - Cluster head does the following:

(1) if component entirely contained in cluster => output size, done.

(2) if component hits boundary of cluster, determine node with largest ID in component K; if this node's entire 2ⁱ neighborhood is contained in C, make this the only remaining active node, otherwise set all nodes to passive (=> not too many nodes continue exploration, low message complexity).

Hierarchical Network Decomposition (2)



• Observation:

- largest node in component always survives (until entire component included)
- in phase i, at least 2ⁱ nodes have to be passive for an active node
- number of active nodes decreases geometrically

Algorithm 1 ALG_{DC}

1: (* Global Preprocessing *) 2: for i from 0 to $\log d$: $\mathcal{D}_i := (\log n, 2^i) - \mathcal{NC}$: 3: 4: (* Runtime *) 5: i := 1: 6: $\forall v \in V'$: v.active :=true: 7: while $(\exists v : v.active = true)$ \forall active v: **notify** v's cluster heads in \mathcal{D}_i ; 8: for all clusters C 9. let $\mathcal{K} := \{K_1, ..., K_r\}$ be C's components; 10: $\forall K \in \mathcal{K}$: 11: if $(K \subseteq C)$: output(size(K)); 12: 13: else $v_{max} := \max\{i | i \in (K \cap C)\};\$ 14: $\forall v \in K$: v.active := false: 15: if $(N_{2i}(v_{max}) \subseteq C)$ 16: $v_{max}.active :=$ true; 17: i + +:18:

Runtime O(d log n) and at most O(s log d log n) messages needed.

d... weak diameter of component

(ess. last cluster diameter)

in each phase s log n messages are sent, and there are log d many phases

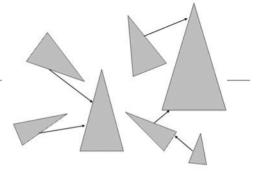
- Idea:
 - Solve neighborhood problem with (log n, 1)-cover
 - Each event node selects parent = neighboring event node with larger ID (if any)
 - Start merge forest: learn about root ("pointer jumping") and join the largest neighboring tree
 - Hence, in phase i, minimal tree is of size at least 2ⁱ

Runtime O(d log s + log s log n) and at most O(s log s (d+log n)) messages needed.

[Time: log n for neighborhood problem. Single tree after log s phases, as tree size doubles. Star conversion with PJ in log s time, each hop taking time at most d. Amortized over all phases also d log s. Convergecasts take time d. Asking children about size of neighboring trees is neighborhood problem, time log n, for each of log s many rounds.]

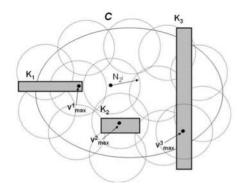
Algorithm 2 ALG _{P,I}	
1:	while $(\exists v \text{ s.t. } v.parent \neq root)$
2:	$\forall v \in T:$
3:	with $prob = 1/2 \ v.bit := 0$, else $v.bit := 1$;
4:	$\forall v \in T:$
5:	if $(v.bit = 0 \land v.parent.bit = 1)$
6:	$IS := IS \cup \{v\};$
7:	$\forall v \in IS:$
8:	v.parent = v.parent.parent;

Algorithm 3 ALG_{FOREST} 1: $\forall v \in V$: define v.parent;2: let $\mathcal{T} := \{T_1, ..., T_f\}$ be set of resulting trees;3: while $(|\mathcal{T}| > 1)$ do4: $\forall T \in \mathcal{T}$: $ALG_{PJ}(T)$;5: $\forall T \in \mathcal{T}$:6: $T_m := max\{X | X \in \mathcal{T}, adjacent(X, T)\};$ 7: if $(T < T_m)$: merge $T \triangleright T_m$;8: update \mathcal{T} : set of resulting trees;



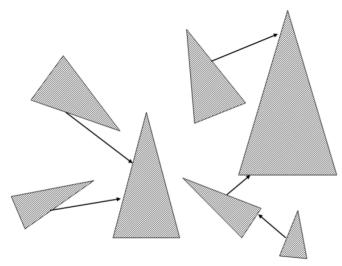
Summary

- Easy in special graphs, e.g., on trees
- Algorithm 1: Hierarchical network decomposition



Runtime O(d log n) and at most O(s log d log n) messages needed.

• Algorithm 2: Merging trees and pointer jumping



Runtime O(d log s + log s log n) and at most O(s log s (d+log n)) messages needed.

Conclusion

- Distributed event detection and alarming
- Two first algorithms
 - Network decomposition
 - Merging trees
- Open problems
 - Alternative algorithms? Distributed MST construction on general graphs?
 - Off-duty model: Non-events node are in sleep mode
 - Lower bounds
 - Smaller messages?
 - Faulty environments when components are not necessarily connected?
 - Dynamic case: e.g., detection of large wave fronts?
 - etc.

Dziekowac!

Slides and papers at http://www14.informatik.tu-muenchen.de/personen/schmiste/