Cooperation in Open Distributed Systems

Stefan Schmid

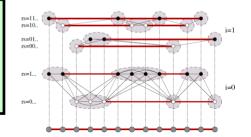
T-Labs, Berlin, July 2, 2009

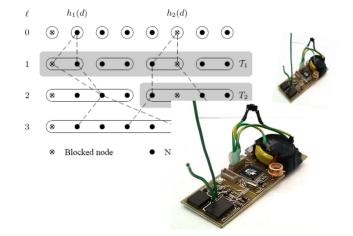

Distributed Systems 2008/9

Wireless: Many mobile phones today have WLAN (and even Skype)

P2P: Olympic games 2008 live-broadcast over peer-to-peer networks

"Social" networks: Facebook, Xing, Twitter... E.g. US elections 2008: Obama makes extensive use of Internet technologies

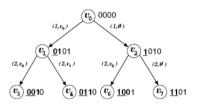




Challenges in Open Distributed Systems (1)

Dynamic resources

e.g., in peer-to-peer computing: worst-case churn, topological self-stabilization, etc.


Robustness

e.g., in wireless networks: jamming e.g., in peer-to-peer networks: DoS attacks (cf Leighton/Akamai)

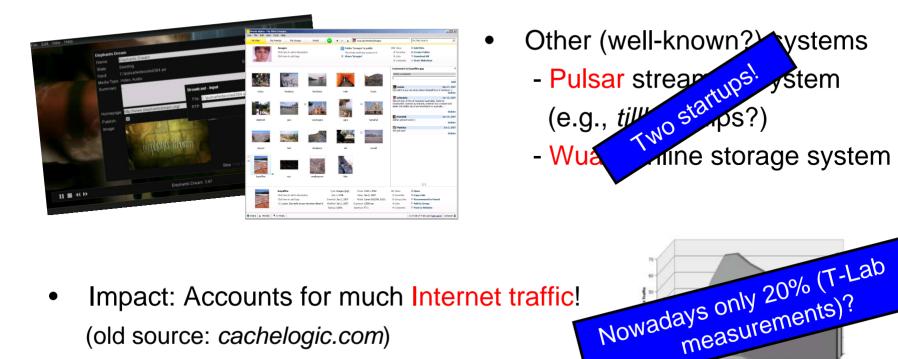
Efficiency

e.g., how to deal with huge amounts of data?

e.g., low-overhead p2p live streaming?

Challenges in Open Distributed Systems (2)

Economics e.g., selfishness / altruism / malicious behavior e.g., mechanism design for anonymous, money-less networks



Heterogeneity

e.g., live streaming with heterogeneous peers

- Well-known p2p systems
 - P2P: contributions of participants
 - Internet telephony: Skype, file sharing: BitTorrent, eMule, ..., streaming: Zattoo, Joost, ...

Impact: Accounts for much Internet traffic! (old source: *cachelogic.com*)

Stefan Schmid @ T-Labs, 2009

measurements)?

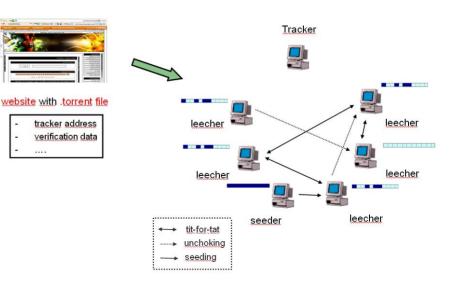
Cooperation in Peer-to-Peer

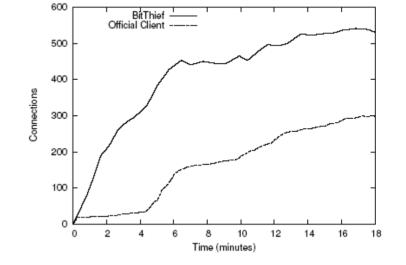
- Peer-to-peer systems
 - open to "everybody"
 - rely on contributions
 - heterogeneous

• Non-cooperation: threat to the paradigm

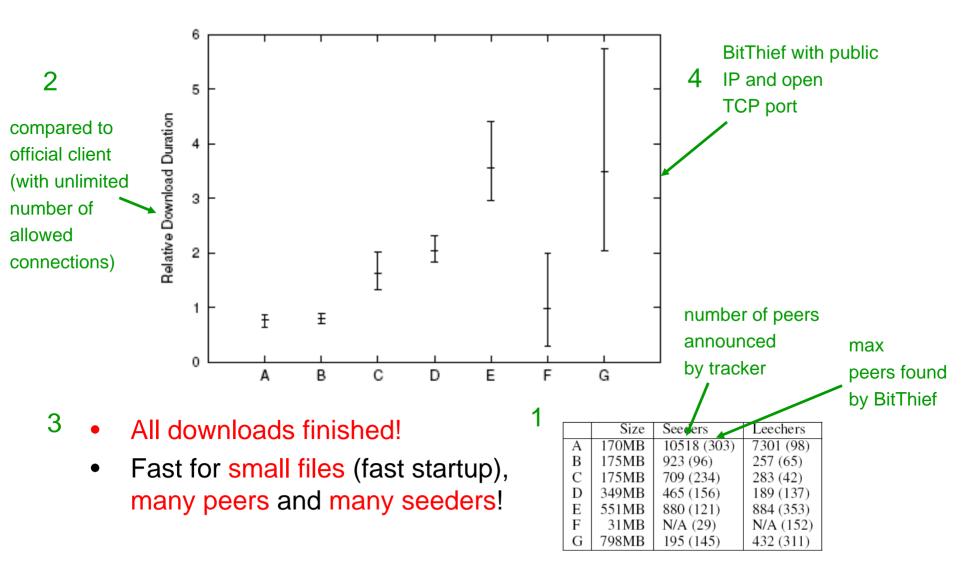
ile Zod-	livecd-1-	1386		
De	tails		10.36% @ 320.62KB/s	Stop
)			BitThief < Zod-livecd-14380	_ 0
Piece		n Connection		
Do	wnload Ra	ite Down	nload Rates Per Peer Blocks Blocks Per Peer	Block Origin
			Download Rate	
3	875 - 850 - 825 - 800 - 275 -	\bigwedge	how	~
3 3 2 2	350 - 325 - 300 - 275 - 250 -	ent Metafile;	/home/Desktop/Zod-livecd-1-i386.torrent	Search
KB/s 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	850 - 125 - 1275 - 250 - Torr		/home/Desktop/Desktop/Zod-Invecd-1-i386.torrent /home/Desktop/Desktop	Search
KB/s 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	850 - 125 - 275 - 250 - Torr Destination		/home/Desktop/Desktop	1 Back Working
KB/s 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	850 - 125 - 275 - 250 - Torr Destination S	on Directory:	/home/Desktop/Desktop	1 Back Working
KB/s 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	850 - 125 - 275 - 250 - Torr Destination S	on Directory: haring Ratio:	/home/Desktop/Desktop	1 Back at any m

- For example BitThief:
 - Proof of concept Java client
 - Downloads without uploading at all
 - despite BitTorrent's incentive mechanism!

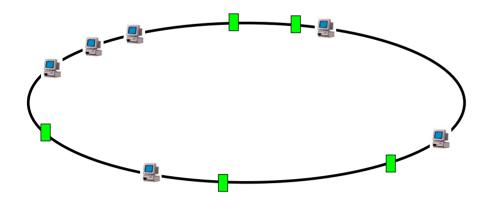

7


BitThief's three simple tricks:

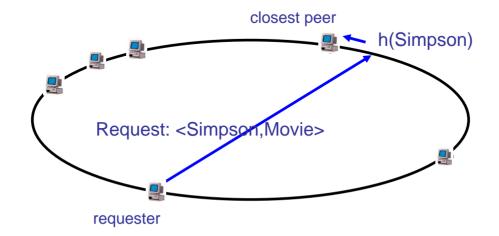
BitThief's Tricks

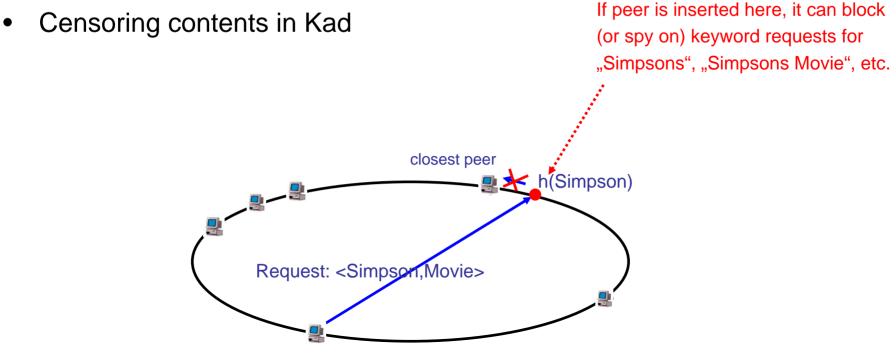

- 1. Open many TCP connections
- 2. Contacting tracker again and again, asking for more peers (never banned!)
- 3. Pretend being a great uploader in sharing communities

- \Rightarrow Exploit optimistic unchoking slots
- \Rightarrow "Exploit" seeders
- \Rightarrow Exploit sharing communities

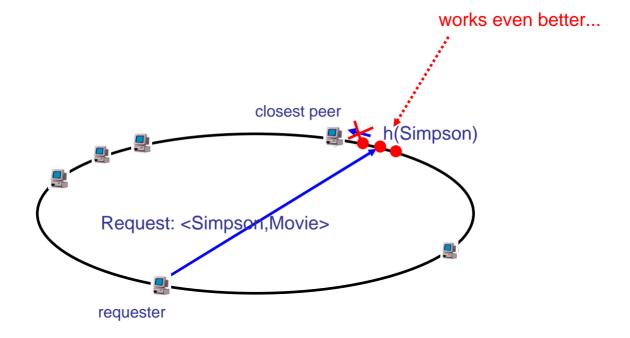

BitThief: Results (with Seeders)

Another Example: Non-cooperation in Kad


- Kad = one of the first widely used **distributed hash tables (DHT)**
- Basic principle
 - Consistent hashing
 - Peers and data items with identifiers chosen from [0,1)
 - (Pointers to) data items stored on closest peers*


* Attention: this is a simplification (factor 10 replication in "close" tolerance zone)

- Several vulnerabilities
- Example: malicious peers can perform censorhip attack
 - Simply by assuming the corresponding IDs (peer insertion attack)
 - No prescribed ID selection method or verification



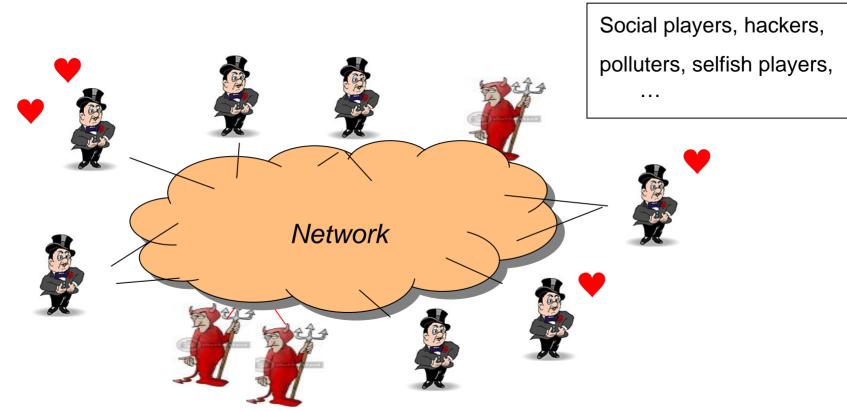
requester

• Censoring contents in Kad

- Some results 100 90 80 70 3 Clients Success Rate (%) - 1 Client 60 50 30 20 10 0 -Ω 2 7 З 5 6
- Similarly for source requests
- There are also other censorship attacks (e.g., pollute cache of other peers)
- Plus eclipse and denial of service attacks (e.g., pollute cache such that requests are forwarded to external peers)...

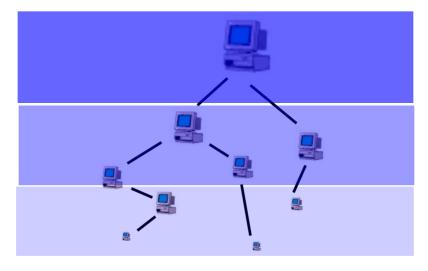
BitThief and Kad Attacks: Easy to Fix?

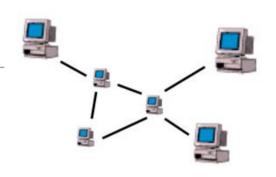
• BitThief


- Optimistic unchoking can be exploited
- Just do pure tit-for-tat? Bootstrap problem...
- Fast extension: subset of pieces only (limited "venture capital")
- No direct interest? E.g., inter-swarm incentives?

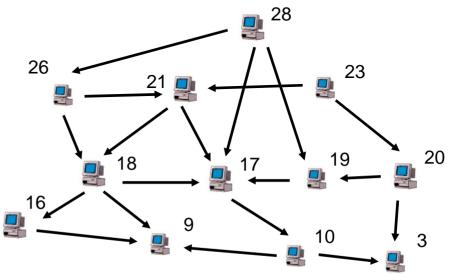
Kad Attacks

- Too much information from same peer (e.g., publish attack)
- Bind ID to peer... But how?
- Bind to IP? NATs yield same peer IDs? Dynamic IP addresses? Credit loss?
- Generate ID, e.g., by hashing a user phrase?
 But sparsely populated ID space =>
 easy to generate IDs close to the object...

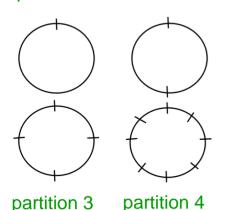

Insights from Game Theory?


• A model for peer-to-peer networks?

- Game theory can help to find mechanisms
 - E.g., malicious players may be beneficial
 - E.g., too much altruism can be harmful


- Heterogeneity
- Tight connections to the cooperation challenge
- E.g., streaming: Shall stronger peers support weaker ones?
 If yes, what about selfishness?
- SHELL: Takes into account heterogeneity
 - Distributed oblivious heap
 - Paths between strong peers do not include weak peers

- What is a **distributed** heap?
- We assume that peers have a key / rank / order / id
 for example: inverse of peer capability
- (Min-) heap property: only connect to lower rank peers
 - for example: peers only connect to stronger peers
 - SHELL constructs a directed overlay (routing along these edges only)

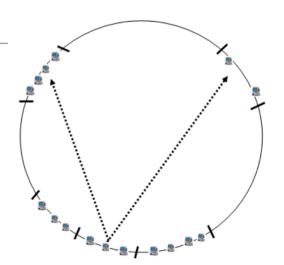


The SHELL Topology

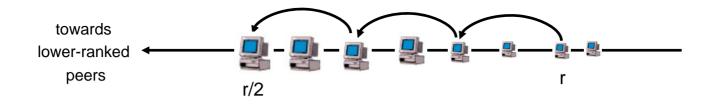
- Continuous-discrete approach: de Bruijn network
- Problem: de Bruijn neighbor may have larger rank

partition 1 partition 2

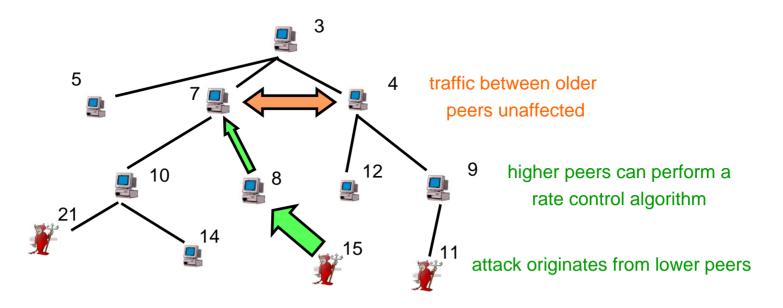
Solution



peer at position x:
 connects to all lower-ranked peers
 in an interval around x/2 and (x+1)/2

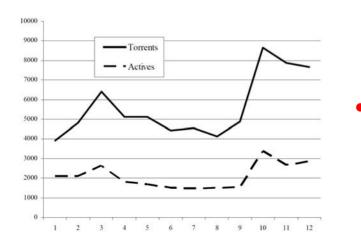

- i.e., space divided into intervals
- size of interval depends on number of low-rank peers there
- larger degree, but still logarithmic diameter etc.
- Oblivious: Very fast joins and leaves!

• Routing paths are augmenting (no weak peer between)



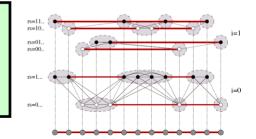
- E.g., live streaming: quality of transmission depends on weaker of the two peers, but not on peers in-between
- Congestion guarantee
 - "first phase" ends at peer rank at least t/2 w.h.p.
 - second phase short...

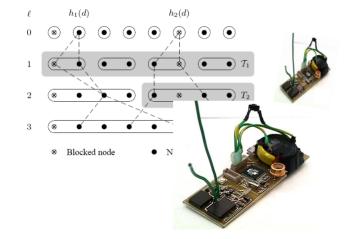
SHELL Solves Cooperation Problems!


- Approach also useful as robust distributed information system
- Idea: de Bruijn heap, but different peer ranks
 - Use rank ~ join time
 - Thus: peers only connect to older peers
 - i.e., maintain join time order

Conclusion

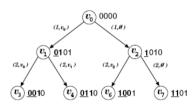
- Presence of unequal participants interesting and important challenge
 - Unequal = voluntarily or involuntarily little or no contribution
 - How to distinguish the two cases in a distributed environment?


• Reality check: are people selfish?


Thank you for your attention!

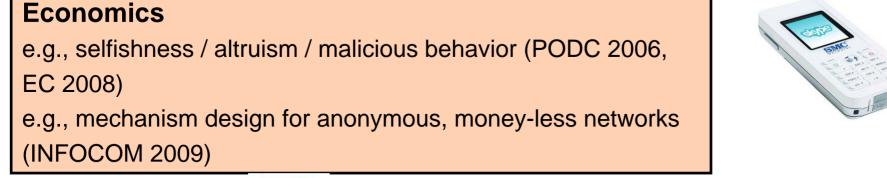
Dynamic resources

e.g., in peer-to-peer computing: worst-case churn (IPTPS 2005), topological self-stabilization (PODC 2009), etc.


Robustness

e.g., in wireless networks: jamming (DCOSS 2009) e.g., in peer-to-peer networks: DoS attacks (SPAA 2009)

Efficiency


e.g., how to deal with huge amounts of data? (PODC 2008)

e.g., low-overhead p2p live streaming? (DISC 2007)

Stefan Schmid @ T-Labs, 2009

Heterogeneity

e.g., live streaming with heterogeneous peers (ICALP 2009)

