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ABSTRACT
This paper studies a virus inoculation game on social net-
works. A framework is presented which allows the mea-
suring of the windfall of friendship, i.e., how much players
benefit if they care about the welfare of their direct neigh-
bors in the social network graph compared to purely selfish
environments. We analyze the corresponding equilibria and
show that the computation of the worst and best Nash equi-
librium is NP-hard. Intriguingly, even though the windfall
of friendship can never be negative, the social welfare does
not increase monotonically with the extent to which play-
ers care for each other. While these phenomena are known
on an anecdotal level, our framework allows us to quantify
these effects analytically.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms
Theory, Security, Human Factors, Economics

Keywords
Game Theory, Social Networks, Equilibria, Virus Propaga-
tion, Windfall of Friendship

1. INTRODUCTION
Social networks have existed for thousands of years, but

it was not until recently that researchers have started to
gain scientific insights into phenomena like the small world
property. The rise of the Internet has enabled people to
connect with each other in new ways and to find friends
sharing the same interests from all over the planet. A social
network on the Internet can manifest itself in various forms.
For instance, on Facebook, people maintain virtual references
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to their friends. The contacts stored on mobile phones or
email clients form a social network as well. The analysis of
such networks is an interesting endeavor, as they comprise
many aspects of our society in general.

A classic tool to model human behavior is game theory.
It has been a fruitful research field in economics and soci-
ology for many years. Recently, computer scientists have
started to use game theory methods to shed light onto the
complexities of today’s highly decentralized networks. In
game theoretic models, one traditionally assumes that peo-
ple act autonomously and are steered by the desire to max-
imize their benefits (or utility). Under this assumption, it
is possible to quantify the performance loss of a distributed
system compared to situations where all participants collab-
orate perfectly. A widely studied measure which captures
this loss of social welfare is the Price of Anarchy (PoA).
Even though these concepts can lead to important insights in
many environments, we believe that in some situations, the
underlying assumptions do not reflect reality well enough.
One such example are social networks: most likely people
act less selfishly towards their friends than towards com-
plete strangers. Such altruistic behavior is not considered in
typical game-theoretic models.

This paper aims at combining these two active threads of
research: social networks and game theory. We introduce a
framework taking into consideration that people may care
about the well-being of their friends. In particular, we define
the Windfall of Friendship (WoF) which captures to what
extent the social welfare improves in social networks com-
pared to purely selfish systems. In order to illustrate our
techniques we provide a game-theoretic analysis of a virus
inoculation game.

Social networks are not only attractive to their partici-
pants, e.g., it is well-known that the user profiles are an
interesting data source for the PR industry to provide tai-
lored advertisements. Moreover, social network graphs can
also be exploited for attacks, e.g., email viruses using the
users’ address books for propagating, worms spreading on
mobile phone networks and over the Internet telephony tool
Skype have been reported (e.g., [8]).

In this paper, we investigate the propagation of such viruses
on social networks. Concretely, we assume that the users
have the choice between risking infection and inoculating by
buying anti-virus software. As expected, our analysis re-
veals that the players in this game always benefit from car-
ing about the other participants in the social network rather
than being selfish. Intriguingly, however, we find that the
Windfall of Friendship does not increase monotonically with



stronger relationships. Despite of the phenomenon being an
“ever-green” in political debates, to the best of our knowl-
edge, this is the first paper to quantify this effect formally.

As another contribution, this paper shows that computing
the best and the worst friendship Nash equilibrium is NP-
hard. In addition, simple networks such as complete graphs
and stars are considered, and upper and lower bounds are
derived. For example, we show that the Windfall of Friend-
ship in a complete graph is at most 4/3; this is tight in
the sense that there are problem instances where the sit-
uation can indeed improve this much. Moreover, we show
that in star graphs, friendship can help to eliminate unde-
sirable equilibria. Generally, we discover that even in simple
graphs the Windfall of Friendship can attain a large spec-
trum of values, from constant ratios up to Θ(n), n being the
network size, which is asymptotically maximal for general
graphs.

The remainder of this paper is organized as follows. In
Section 2, we review related work in the area of social net-
works and game theory. Section 3 formally introduces our
model and framework. Our main contributions are pre-
sented in Sections 4 and 5 where results for general and
special graphs are derived. Finally, we conclude the paper
in Section 6.

2. RELATED WORK
Social networks are currently a hot topic not only in social

sciences, but also in ethnology, psychology and communica-
tion sciences. Computer scientists have become interested in
these networks as well, and many social networks exist today
on the Internet, e.g., Facebook, LinkedIn, MySpace, Orkut,
or Xing, to name but a few. The famous small world exper-
iment [23] conducted by Stanley Milgram 1967 has gained
attention by the algorithm community [17] and inspired re-
search on topics such as decentralized search algorithms [18,
22], routing on social networks [9, 17, 21] and the identi-
fication of communities [7, 26]. The dynamics of epidemic
propagation of information or diseases has been studied from
an algorithmic perspective as well [19, 20]. Knowledge on
effects of this cascading behavior is useful to understand phe-
nomena as diverse as word-of-mouth effects, the diffusion of
innovation, the emergence of bubbles in a financial market
or the rise of a political candidate. It can also help to iden-
tify sets of influential nodes in networks where marketing is
particularly efficient (viral marketing). For a good overview
on economic aspects of social networks, we refer the reader
to [4], which, inter alia, compares random graph theory with
game theoretic models for the formation of social networks.

Recently, game theory has also received much attention
by computer scientists. Today, many different actors and
stake-holders influence the decentralized growth of the In-
ternet. Game theory is a useful tool to gain insights into its
socio-economic complexity. Many aspects have been stud-
ied, e.g., routing [27, 28], multicast transmissions [6], or net-
work creation [5, 24].

This paper seeks to apply game theory to social networks
where players are not completely selfish and autonomous
but have friends about whose well-being they care to some
extent. We exemplify our mathematical framework with a
virus inoculation game on social graphs. There is a large
body of literature on the propagation of viruses [3, 10, 15,
16, 29]. Miscellaneous misuse of social networks has been re-

ported, e.g., email viruses1 have used address lists to prop-
agate to the users’ friends. Similar vulnerabilities have been
exploited to spread worms on the mobile phone network [8]
and on the Internet telephony tool Skype2.

The papers closest to ours are [1, 25]. Our model is in-
spired by Aspnes et al. [1]. The authors apply a classic
game-theoretic analysis and show that selfish systems can
be very inefficient, as the Price of Anarchy is Θ(n), where n
is the total number of players. They show that computing
the social optimum is NP-hard and give a reduction to the
combinatorial problem sum-of-squares partition. They also
present a O(log2 n) approximation. Moscibroda et al. [25]
have extended this model by introducing malicious players
in the selfish network. This extension allows us to estimate
the robustness of a distributed system to malicious attacks.
They also find that in a non-oblivious model, intriguingly,
the presence of malicious players may actually improve the
social welfare. The Windfall of Malice has also been studied
in the context of congestion games [2] by Babaioff et al. In
contrast to these papers, our focus here is on social graphs
where players are concerned about their friends’ benefits.

Finally, there is other literature on game theory where
players are influenced by their neighbors. In graphical eco-
nomics [12, 14], an undirected graph is given where an edge
between two players denotes that free trade is allowed be-
tween the two parties, where the absence of such an edge
denotes an embargo or an other restricted form of direct
trade. The payoff of a player is a function of the actions
of the players in its neighborhood only. In contrast to our
work, a different equilibrium concept is used and no social
aspects are taken into consideration.

3. MODEL
This section introduces our framework. In order to gain

insights into the Windfall of Friendship, we study a virus
inoculation game on a social graph. We present the model of
this game and we show how it can be extended to incorporate
social aspects.

3.1 Virus Inoculation Game
The virus inoculation game was introduced by [1]. We are

given an undirected network graph G = (V,E) of n = |V |
players (or nodes) pi ∈ V , for i = 1, . . . , n, who are con-
nected by a set of edges (or links) E. Every player has to
decide whether it wants to inoculate (e.g., purchase and in-
stall anti-virus software) which costs C, or whether it prefers
saving money and facing the risk of being infected. We as-
sume that being infected yields a damage cost of L (e.g.,
a computer is out of work for L days). In other words, an
instance I of a game consists of a graph G = (V,E), the
inoculation cost C and a damage cost L. We introduce a
variable ai for every player pi denoting pi’s chosen strat-
egy. Namely, ai = 1 describes that player pi is protected
whereas for a player pj willing to take the risk, aj = 0. In
the following, we will assume that aj ∈ {0, 1}, that is, we
do not allow players to mix (i.e., use probabilistic distribu-
tions over) their strategies. These choices are summarized
by the strategy profile, the vector ~a = (a1, . . . , an). After
the players have made their decisions, a virus spreads in the

1E.g., the Outlook worm Worm.ExploreZip.
2See http://news.softpedia.com/news/Skype-Attacked-By-
Fast-Spreading-Virus-52039.shtml.



network. The propagation model is as follows: first, one
node p of the network is chosen uniformly at random as a
starting point. If this node is inoculated, there is no damage
and the process terminates. Otherwise, the virus infects p
and all unprotected neighbors of p. The virus now propa-
gates recursively to their unprotected neighbors. Hence, the
more insecure players are connected, the more likely they
are to be infected. The vulnerable region (set of nodes) in
which an insecure player pi lies is referred to as pi’s attack
component.

We only consider a limited region of the parameter space
to avoid trivial cases. If the cost C is too large, no player
will inoculate, resulting in a totally insecure network and
therefore all nodes eventually will be infected. On the other
hand, if C << L, the best strategy for all players is to
inoculate. Thus, we will assume that C ≤ L and C > L/n
in the following.

In our game, a player has the following expected cost:

Definition 3.1 (Actual Individual Cost).
The actual individual cost of a player pi is defined as

ca(i,~a) = ai · C + (1− ai)L ·
ki

n

where ki denotes the size of pi’s attack component. If pi is
inoculated, ki stands for the size of the attack component
that would result if pi became insecure. In the following, let
c0a(i,~a) refer to the actual cost of an insecure and c1a(i,~a) to
the actual cost of a secure node pi.

The total social cost of a game is defined as the sum of the
cost of all participants: Ca(~a) =

P
pi∈V ca(i,~a).

Classic game theory assumes that all players act selfishly,
i.e., each player seeks to minimize its individual cost. In or-
der to study the impact of such selfish behavior, the solution
concept of a Nash equilibrium (NE) is used. A Nash equilib-
rium is a strategy profile where no selfish player can unilat-
erally reduce its individual cost given the strategy choices
of the other players. We can think of Nash equilibria as
the stable strategy profiles of games with selfish players. As
stated eralier already, we consider only pure Nash equilibria
in this paper, i.e., players cannot use random distributions
over their strategies but are bound to decide whether they
want to inoculate or not.

In a pure Nash equilibrium, it must hold for each player pi

that given a strategy profile ~a ∀pi ∈ V, ∀a′i 6= ai : ca(i,~a) ≤
ca(i, (a1, . . . , a

′
i, . . . , an)), implying that player pi cannot de-

crease its cost by choosing an alternative strategy a′i. In
order to quantify the performance loss due to selfishness,
the (not necessarily unique) Nash equilibria are compared
to the optimum situation where all players collaborate. To
this end we consider the Price of Anarchy (PoA), i.e., the
ratio of the social cost of the worst Nash equilibrium divided
by the optimal social cost for a problem instance I. More
formally, PoA(I) = maxNE CNE(I)/COPT (I).

3.2 Social Networks
We now introduce our model for social networks. We de-

fine a Friendship Factor F which captures the extent to
which players care about their friends, i.e., about the play-
ers adjacent to them in the social network. More formally,
F is the factor by which a player pi takes the individual cost
of its neighbors into account when deciding for a strategy.
F can assume any value between 0 and 1. F = 0 implies

that the players do not consider their neighbors’ cost at all,
whereas F = 1 implies that a player values the well-being
of its neighbors to the same extent as its own. Let Γ(pi)
denote the set of neighbors of a player pi. Moreover, let
Γsec(pi) ⊆ Γ(pi) be the set of inoculated neighbors, and
Γsec(pi) = Γ(pi)\Γsec(pi) the remaining insecure neighbors.

We distinguish between a player’s actual cost and a player’s
perceived cost. A player’s actual individual cost is the ex-
pected cost arising for each player defined in Definition 3.1
used to compute a game’s social cost. In our social net-
work, the decisions of our players are steered by the players’
perceived cost.

Definition 3.2 (Perceived Individual Cost).
The perceived individual cost of a player pi is defined as

cp(i,~a) = ca(i,~a) + F ·
X

pj∈Γ(pi)

ca(j,~a).

In the following, we write c0p(i,~a) to denote the perceived cost
of an insecure node pi and c1p(i,~a) for the perceived cost of
an inoculated node.

This definition entails a new notion of equilibrium. We
define a friendship Nash equilibrium (FNE) as a strategy
profile ~a where no player can reduce its perceived cost by
unilaterally changing its strategy given the strategies of the
other players. Formally, ∀pi ∈ V, ∀a′i 6= ai : cp(i,~a) ≤
cp(i, (a1, . . . , a

′
i, . . . , an)).Given this equilibrium concept, we

define the Windfall of Friendship Υ.

Definition 3.3 (Windfall of Friendship (WoF)).
The Windfall of Friendship Υ(F, I) is the ratio of the social
cost of the worst Nash equilibrium for I and the social cost
of the worst friendship Nash equilibrium for I:

Υ(F, I) =
maxNE CNE(I)

maxFNE CFNE(F, I)

Υ(F, I) > 1 implies the existence of a real windfall in the
system, whereas Υ(F, I) < 1 denotes that the social cost
can become greater in social graphs than in purely selfish
environments.

4. GENERAL ANALYSIS
In this section we characterize friendship Nash equilibria

and derive general results on the Windfall of Friendship for
the virus propagation game in social networks. It has been
shown in [1] that in classic Nash equilibria (F = 0), an attack
component can never consist of more than Cn/L insecure
nodes. A similar characteristic also holds for friendship Nash
equilibria. As every player cares about its neighbors, the
maximal attack component size in which an insecure player
pi still does not inoculate depends on the number of pi’s
insecure neighbors and the size of their attack components.
Therefore, it differs from player to player. We have the
following helper lemma.

Lemma 4.1. The player pi will inoculate if and only if the
size of its attack component is

ki >
Cn/L+ F ·

P
pj∈Γsec(pi) kj

1 + F |Γsec(pi)|
,

where the kjs are the attack component sizes of pi’s insecure
neighbors assuming pi is secure.



Proof. Player pi will inoculate if and only if this choice
lowers the perceived cost. By Definition 3.2, the perceived
individual cost of an inoculated node are

c1p(i,~a) = C + F

0@|Γsec(pi)|C +
X

pj∈Γsec(pi)

L
kj

n

1A
and for an insecure node we have

c0p(i,~a) = L
ki

n
+ F

„
|Γsec(pi)|C + |Γsec(pi)|L

ki

n

«
.

For pi to prefer to inoculate it must hold that

c0p(i,~a) > c1p(i,~a) ⇔

L
ki

n
+ F · |Γsec(pi)|L

ki

n
> C + F ·

X
pj∈Γsec(pi)

L
kj

n
⇔

L
ki

n
(1 + F |Γsec(pi)|) > C +

FL

n
·

X
pj∈Γsec(pi)

kj ⇔

ki(1 + F |Γsec(pi)|) > Cn/L+ F ·
X

pj∈Γsec(pi)

kj ⇔

ki >
Cn/L+ F ·

P
pj∈Γsec(pi) kj

1 + F |Γsec(pi)|
.

A pivotal question is of course whether social networks
where players care about their friends yield better equilibria
than selfish environments. The following theorem answers
this questions affirmatively: the worst FNE costs never more
than the worst NE.

Theorem 4.2. For all instances of the virus inoculation
game and 0 ≤ F ≤ 1, it holds that

1 ≤ Υ(F, I) ≤ PoA(I).

Proof. The proof idea for Υ(F, I) ≥ 1 is the follow-
ing: for an instance I we consider an arbitrary FNE with
F > 0. Given this equilibrium, we show the existence of a
NE with larger social cost. Let α be any (e.g., the worst)
FNE in the social model. If α is also a NE in the same
instance with F = 0 then we are done. Otherwise there
is at least one player pi that prefers to change its strat-
egy. Assume pi is insecure but favors inoculation. There-
fore pi’s attack component has on the one hand to be of
size at least k′i > Cn/L [1] and on the other hand of size at
most k′′i = (Cn/L+F ·

P
pj∈Γsec(pi) kj)/(1 +F |Γsec(pi)|) ≤

(Cn/L + F |Γsec(pi)|(k′′i − 1))/(1 + F |Γsec(pi)|) ⇔ k′′i ≤
Cn/L− F |Γsec(pi)| (cf Lemma 4.1). This is impossible and
yields a contradiction to the assumption that in the selfish
network, an additional player wants to inoculate.

It remains to study the case where pi is secure in the
FNE but prefers to be insecure in the NE. Observe that,
since every player has the same preference on the attack
component’s size when F = 0, a newly insecure player can-
not trigger other players to inoculate. Furthermore, only
the players inside pi’s attack component are affected by this
change. The total cost of this attack component increases

by at least

x =
ki

n
L− C| {z }
pi

+
X

pj∈Γsec(pi)

„
ki

n
L− kj

n
L

«
| {z }

pi’s insecure neighbors

=
ki

n
L− C +

L

n
(|Γsec(pi)|ki −

X
pj∈Γsec(pi)

kj).

Applying Lemma 4.1 guarantees thatX
pj∈Γsec(pi)

kj ≤
ki(1 + F |Γsec(pi)|)− Cn/L

F
.

This results in

x ≥ L

n

„
|Γsec(pi)|ki −

ki(1 + F |Γsec(pi)|)− Cn/L
F

«
=

kiL

n
(1− 1

F
)− C(1− 1

F
) > 0,

since a player only gives up its protection if C > kiL
n

. If
more players are unhappy with their situation and become
vulnerable, the cost for the NE increases further. In conclu-
sion, there exists a NE for every FNE with F ≥ 0 for the
same instance which is at least as expensive.

The upper bound for the WoF, i.e., PoA(I) ≥ Υ(F, I),
follows directly from the definitions: while the PoA is the
ratio of the NE’s social cost divided by the social optimum,
Υ(F, I) is the ratio between the cost of the NE and the
FNE. As the FNE’s cost must be at least as large as the
social optimum cost the claim follows.

Remark 4.3. Note that Aspnes et al. [1] proved that the
Price of Anarchy never exceeds the size of the network, i.e.,
n ≥ PoA(I). Consequently, the Windfall of Friendship can-
not be larger than n due to Theorem 4.2.

The above result leads to the question of whether the
Windfall of Friendship grows monotonically with stronger
social ties, i.e., with larger friendship factors F . Intrigu-
ingly, this is not the case.

Theorem 4.4. For all network with more than seven nodes,
there exist game instances where Υ(F, I) does not grow mono-
tonically in F .

Proof. We give a counter example for the star graph Sn

which has one center node and n − 1 leaf nodes. Consider
two friendship factors, Fl and Fs where Fl > Fs. We show
that for the large friendship factor Fl, there exists a FNE,
FNE1, where only the center node and one leaf node remain
insecure. For the same setting but with a small friendship
factor Fs, at least two leaf nodes will remain insecure, which
will trigger the center node to inoculate, yielding a FNE,
FNE2, where only the center node is secure.

Consider FNE1 first. Let c be the insecure center node,
let l1 be the insecure leaf node, and let l2 be a secure leaf
node. In order for FNE1 to constitute a Nash equilibrium,
the following conditions must hold:

node c :
2L

n
+

2FlL

n
< C +

FlL

n

node l1 :
2L

n
+

2FlL

n
< C +

FlL

n



node l2 : C +
2FlL

n
<

3L

n
+

3FlL

n

For FNE2, let c be the insecure center node, let l1 be one
of the two insecure leaf nodes, and let l2 be a secure leaf
node. In order for the leaf nodes to be happy with their
situation but for the center node to prefer to inoculate, it
must hold that:

node c : C +
2FsL

n
<

3L

n
+

6FsL

n

node l1 :
3L

n
+

3FsL

n
< C +

2FsL

n

node l2 : C +
3FsL

n
<

4L

n
+

4FsL

n

Now choose C := 5L/(2n) + FlL/n. This yields the fol-
lowing conditions: Fl > Fs + 1/2, Fl < Fs + 3/2, and
Fl < 4Fs + 1/2. These conditions are easily fulfilled, e.g.,
with Fl = 3/4 and Fs = 1/8. Observe that the social cost of
the first FNE (for Fl) is Cost(Sn,~aFNE1) = (n−2)C+4L/n,
whereas for the second FNE (for Fs) Cost(Sn,~aFNE2) = C+
(n − 1)L/n. Thus, Cost(Sn,~aFNE1) − Cost(Sn,~aFNE2) =
(n− 3)C − (n+ 3)L/n > 0 as we have chosen C > 5L/(2n)
and as, due to our assumption, n > 7. This concludes the
proof.

Reasoning about best and worst Nash equilibria raises the
question of how difficult it is to compute such equlibria. We
can generalize the proof given in [1] and show that com-
puting the most economical and the most expensive FNE is
hard for any friendship factor.

Theorem 4.5. Computing the best and the worst pure
FNE is NP-complete for any F ∈ [0, 1].

Proof. We prove this theorem by a reduction from two
NP-hard problems, Vertex Cover [13] and Independent
Dominating Set [11]. Concretely, for the decision ver-
sion of the problem, we show that answering the question
whether there exists a FNE costing less than k, or more than
k respectively, is at least as hard as solving vertex cover or
independent dominating set. Note that verifying whether a
proposed solution is correct can be done in polynomial time,
hence the problems are indeed in NP.

Fix some graph G = (V,E) and set C = 1 and L =
n/1.5. We show first that the following two conditions are
necessary and sufficient for a FNE: (a) all neighbors of an
insecure node are secure, and (b) every inoculated node has
at least one insecure neighbor. Due to our assumption that
C > L/n, condition (b) is satisfied in all FNE. To see that
condition (a) holds as well, assume the contrary, i.e., an
attack component of size at least two. An insecure node pi in
this attack component bears the cost ki

n
L+F (|Γsec(pi)|C+

|Γsec(pi)| ki
n
L). Changing its strategy reduces its cost by at

least ∆i = ki
n
L+ F |Γsec(pi)| ki

n
L−C − F |Γsec(pi)| ki−1

n
L =

ki
n
L + F |Γsec(pi)| 1nL − C. By our assumption that ki ≥ 2,

and hence |Γsec(pi)| ≥ 1, it holds that ∆i > 0, resulting in
pi becoming secure. Hence, condition (a) holds in all FNE
as well. For the opposite direction assume that an insecure
node wants to change its strategy even though (a) and (b)
are true. This is impossible because in this case (b) would be
violated. An inoculated node would destroy (a) by adopting
another strategy. Thus (a) and (b) are sufficient for a FNE.

We now argue that G has a vertex cover of size k if and
only if the virus game has a FNE with k or fewer secure
nodes, or equivalently an equilibrium with social cost at
most Ck + (n − k)L/n, as each insecure node must be in
a component of size 1 and contributes exactly L/n expected
cost. Given a minimal vertex cover V ′ ⊆ V , observe that
installing the software on all nodes in V ′ satisfies condition
(a) because V ′ is a vertex cover and (b) because V ′ is min-
imal. Conversely, if V ′ is the set of secure nodes in a FNE,
then V ′ is a vertex cover by condition (a) which is minimal
by condition (b).

For the worst FNE, we consider an instance of the in-
dependent dominating set problem. Given an independent
dominating set V ′, installing the software on all nodes ex-
cept the nodes in V ′ satisfies condition (a) because V ′ is
independent and (b) because V ′ is a dominating set. Con-
versely, the insecure nodes in any FNE are independent by
condition (a) and dominating by condition (b). This shows
that G has an independent dominating set of size at most
k if and only if it has a FNE with at least n − k secure
nodes.

5. WINDFALL FOR SPECIAL GRAPHS
While the last section has presented general results on

equilibria in social networks and the Windfall of Friendship,
we now present upper and lower bounds on the Windfall
of Friendship for concrete topologies, namely the complete
graph Kn and the star graph Sn.

5.1 Complete Graphs
In order to initiate the study of the Windfall of Friend-

ship, we consider a very simple topology, the complete graph
Kn where all players are connected to each other. First con-
sider the classic setting where nodes do not care about their
neighbors (F = 0). We have the following result:

Lemma 5.1. In the graph Kn, there are two Nash equilib-
ria with total cost

NE1: Cost(Kn,~aNE1) = C(n− dCn/Le+ 1)

+L/n(dCn/Le − 1)2,

and

NE2: Cost(Kn,~aNE2) = C(n− bCn/Lc)
+L/n(bCn/Lc)2.

If dCn/Le−1 = bCn/Lc, there is only one Nash equilibrium.

Proof. Let ~a be a NE. Consider an inoculated node
pi and an insecure node pj , and hence ca(i,~a) = C and

ca(j,~a) = L
kj

n
, where kj is the total number of insecure

nodes in Kn. In order for pi to remain inoculated, it must
hold that C ≤ (kj + 1)L/n, so kj ≥ dCn/L − 1e; for pj to
remain insecure, it holds that kjL/n ≤ C, so kj ≤ bCn/Lc.
As the total social cost in Kn is given by Cost(Kn,~a) =
(n− kj)C + k2

jL/n, the claim follows.

Observe that the equilibrium size of the attack component
is roughly twice the size of the attack component of the social
optimum, as Cost(Kn,~a) = (n−kj)C+k2

jL/n is minimized
for kj = Cn/2L.

Lemma 5.2. In the social optimum for Kn, the size of the
attack component is either b 1

2
Cn/Lc or d 1

2
Cn/Le, yielding



a total social cost of

Cost(Kn,~aOPT) = (n− b1
2
Cn/Lc)C + (b1

2
Cn/Lc)2L

n
or

Cost(Kn,~aOPT) = (n− d1
2
Cn/Le)C + (d1

2
Cn/Le)2L

n
.

In order to compute the Windfall of Friendship, the friend-
ship Nash equilibria in social networks have to be identified.

Lemma 5.3. In Kn, there are two friendship Nash equi-
libria with total cost

FNE1: Cost(Kn,~aFNE1) = C

„
n−

‰
Cn/L− 1

1 + F

ı«
+L/n

„‰
Cn/L− 1

1 + F

ı«2

,

and

FNE2: Cost(Kn,~aFNE2) = C

„
n−

—
Cn/L+ F

1 + F

�«
+L/n

„—
Cn/L+ F

1 + F

�«2

.

If d(Cn/L− 1)/(1 + F )e = b(Cn/L+ F )/(1 + F )c, there is
only one FNE.

Proof. According to Lemma 4.1, in a FNE, a node pi

remains secure if otherwise the component had size at least
ki = kj + 1 ≥ (Cn/L + Fk2

j )/(1 + Fkj) where kj is the
number of insecure nodes. This implies that kj ≥ d(Cn/L−
1)/(1 + F )e. Dually, for an insecure node pj it holds that
kj ≤ (Cn/L + F (kj − 1)2)/(1 + F (kj − 1)) and therefore
kj ≤ b(Cn/L + F )/(1 + F )c. Given these bounds on the
total number of insecure nodes in a FNE, the social cost can
be obtained by substituting kj in Cost(Kn,~a) = (n−kj)C+
k2

jL/n. As the difference between the upper and the lower
bound for kj is at most 1, there are at most two equilibria
and the claim follows.

Given the characteristics of the different equilibria, we
have the following theorem.

Theorem 5.4. In Kn, the Windfall of Friendship is at
most Υ(F, I) = 4/3 for an arbitrary network size. This is
tight in the sense that there are indeed instances where the
worst FNE is a factor 4/3 better than the worst NE.

Proof. Upper Bound. We first derive the upper bound
on Υ(F, I).

Υ(F, I) =
Cost(Kn,~aNE)

Cost(Kn,~aFNE)

≤ Cost(Kn,~aNE)

Cost(Kn,~aOPT)

≤
(n− dCn/L− 1e)C + (bCn/Lc)2 L

n

(n− 1
2
Cn/L)C + ( 1

2
Cn/L)2 L

n

as the optimal social cost (cf Lemma 5.2) is smaller or equal
to the social cost of any FNE. Simplifying this expression
yields

Υ(F, I) ≤ n(1− C/L)C + C2n/L

n(1− 1
2
C/L)C + 1

4
C2n/L

=
1

1− 1
4
C/L

.

This term is maximized for L = C, implying that Υ(F, I) ≤
4/3, for arbitrary n.

Lower Bound. We now show that the ratio between the
equilibria cost reaches 4/3.

There exists exactly one social optimum of cost Ln/2 +
(n/2)2L/n = 3nL/4 for even n and C = L by Lemma 5.2.
For F = 1 this is also the only friendship Nash equilibrium
due to Lemma 5.3. In the selfish game however the Nash
equilibrium has fewer inoculated nodes and is of cost nL (see
Lemma 5.1). Since these are the only Nash equilibria they
constitute the worst equilibria and the ratio is

Υ(F, I) =
Cost(Kn,~aNE)

Cost(Kn,~aFNE)
=

nL

3/4nL
= 4/3.

To conclude our analysis of Kn, observe that friendship
Nash equilibria always exist in complete graphs, and that in
environments where one node at a time is given the chance
to change its strategy in a best response manner quickly
results in such an equilibrium.

5.2 Star
While the analysis of Kn was simple, it turns out that

already slightly more sophisticated graphs are challenging.
In the following, we investigate the Windfall of Friendship
in star graphs Sn. Note that in Sn, the social welfare is
maximized if the center node inoculates and all other nodes
do not. The total inoculation cost then is C and the attack
components are all of size 1, yielding a total social cost of
Cost(Sn,~aOPT) = C + (n− 1)L/n.

Lemma 5.5. In the social optimum of the star graph Sn,
only the center node is inoculated. The social cost is

Cost(Sn,~aOPT) = C + (n− 1)L/n.

The situation where only the center node is inoculated also
constitutes a NE. However, there are more Nash equilibria.

Lemma 5.6. In the star graph Sn, there are at most three
Nash equilibria with total cost

NE1: Cost(Sn,~aNE1) = C + (n− 1)L/n,

NE2: Cost(Sn,~aNE2) = C(n− dCn/Le+ 1)

+L/n(dCn/Le − 1)2,

and

NE3: Cost(Sn,~aNE3) = C(n− bCn/Lc)
+L/n(bCn/Lc)2.

If Cn/L /∈ N, only two equilibria exist.

Proof. If the center node is the only secure node, chang-
ing its strategy costs L but saves only C. When a leaf node
becomes secure, its cost changes from L/n to C. These
changes are unprofitable, and the social cost of this NE is
Cost(Sn,~aNE1) = C + (n− 1)L/n.

For the other Nash equilibria the center node is not inocu-
lated. Let the number of insecure leaf nodes be n0. In order
for a secure node to remain secure, it must hold that C ≤
(n0 + 2)L/n, and hence n0 ≥ dCn/L − 2e. For an insecure
node to remain insecure, it must hold that (1+n0)L/n ≤ C,
thus n0 ≤ bCn/L − 1c. Therefore, we can conclude that
there are at most two Nash equilibria, one with dCn/L− 1e
and one with bCn/Lc many insecure nodes. The total so-
cial cost follows by substituting n0 in the total social cost
function. Finally, observe that if Cn/L ∈ N and Cn/L > 3,
all three equilibria exist in parallel.



Let us consider the social network scenario again.

Lemma 5.7. In Sn, there are at most three friendship
Nash equilibria with total cost

FNE1: Cost(Sn,~aFNE1) = C + (n− 1)L/n,

FNE2: Cost(Sn,~aFNE2) = C(n− dCn/L− F e+ 1)

+L/n(dCn/L− F e − 1)2,

and

FNE3: Cost(Sn,~aFNE3) = C(n− bCn/L− F c)
+L/n(bCn/L− F c)2.

If Cn/L−F /∈ N, at most 2 friendship Nash equilibria exist.

Proof. First, observe that having only an inoculated
center node constitutes a FNE. In order for the center node
to remain inoculated, it must hold that C + F (n− 1)L 1

n
≤

nL/n + F (n − 1)Ln
n

= L + F (n − 1)L. All leaf nodes
remain insecure as long as L/n + FC ≤ C + FC ⇔
L/n ≤ C. These conditions are always true, and we have
Cost(Sn,~aFNE1) = C + (n− 1)L/n.If the center node is not
inoculated, we have n0 insecure and n − n0 − 1 inoculated
leaf nodes. In order for a secure leaf node to remain secure,
it is necessary that C + F n0+1

n
L ≤ n0+2

n
L + F n0+2

n
L, so

n0 ≥ dCn/L−F e−2. For an insecure leaf node, it must hold
that n0+1

n
L+F n0+1

n
L ≤ C+F n0

n
L, so n0 ≤ bCn/L−F c−1.

The claim follows by substitution.

Note that there are instances where FNE1 is the only
friendship Nash equilibrium. We already made use of this
phenomenon in Section 4 to show that Υ(F, I) is not mono-
tonically increasing in F . The next lemma states under
which circumstances this is the case.

Lemma 5.8. In Sn, there is a unique FNE equivalent to
the social optimum if and only if

bCn/L− F c − b 1

2F
(
p

1− 4F (1− Cn/L)− 1)c − 2 ≥ 0

Proof. Sn has only one FNE if every (insecure) leaf node
is content with its chosen strategy but the insecure center
node would rather inoculate. In order for an insecure leaf
node to remain insecure we have n0 ≤ bCn/L− 1− F c and
the insecure center node wants to inoculate if and only if

C + F (n− n0 − 1)C + Fn0
1

n
L

< (n0 + 1)
L

n
+ F (n− n0 − 1)C + Fn0

n0 + 1

n
L,

which is equivalent to Fn2
0 +n0 +1−Cn/L > 0. This implies

that n0 ≥ b 1
2F

(
p

1− 4F (1− Cn/L) − 1) + 1c. Therefore
there is only one FNE if and only if there exists an integer
n0 such that b 1

2F
(
p

1− 4F (1− Cn/L) − 1) + 1c ≤ n0 ≤
bCn/L− 1− F c.

Given the characterization of the various equilibria, the
Windfall of Friendship can be computed.

Theorem 5.9. If b 1
2F

(
p

1− 4F (1− Cn/L) − 1)c + 2 −
bCn/L− F c ≤ 0, the Windfall of Friendship is

Υ(F, I) ≥ (n− 2)C + L/n

C + (n− 1)L/n
, else Υ(F, I) ≤ n+ 1

n− 3
.

Proof. According to Lemma 5.8, the friendship Nash
equilibrium is unique and hence equivalent to the social opti-
mum if bCn/L−F c−b 1

2F
(
p

1− 4F (1− Cn/L)−1)c−2 ≥ 0.
On the other hand, observe that there always exist expen-
sive Nash equilibria where the center node is not inoculated.
Hence, we have

Υ(F, I) =
Cost(Sn,~aNE)

Cost(Sn,~aFNE)
=

Cost(Sn,~aNE)

Cost(Sn,~aOPT)

≥ (n− bCn/L− 1c)C + (dCn/Le − 1)2L/n

C + (n− 1)L/n

≥ C(n− 2) + L/n

C + (n− 1)L/n
.

Otherwise, i.e., if there exist friendship Nash equilibria
with an insecure center node, an upper bound for the WoF
can be computed

Υ(F, I) =
Cost(Sn,~aNE)

Cost(Sn,~aFNE)

≤ (n− dCn/L− 1e)C + (bCn/Lc)2L/n

(n− bCn/L− F c)C + (dCn/L− 1− F e)2L/n

≤ (n+ 1)C

nC + FC − 2C(1 + F ) + (1 + F )2L/n

<
(n+ 1)C

C(n+ F − 2(1 + F ))
<

n+ 1

n− 3
.

Theorem 5.9 reveals that caring about the cost incurred by
friends is particularly helpful to reach more desirable equi-
libria. In large star networks, the social welfare can be much
higher than in Nash equilibria: in particular, the Windfall
of Friendship can increase linearly in n, and hence indeed be
asymptotically as large as the Price of Anarchy. However, if
bCn/L− F c − b 1

2F
(
p

1− 4F (1− Cn/L)− 1)c − 2 ≥ 0 does
not hold, social networks are not much better than purely
selfish systems: the maximal gain is constant.

Finally observe that in stars friendship Nash equilibria
always exist and can be computed efficiently (in linear time)
by any best response strategy.

5.3 Discussion
We consider the results derived in this section as a first

step. Besides stars and complete graphs, there are many
other interesting graph classes, e.g., Kleinberg graphs fea-
turing the small-world property. In this section, we have
shown that even simple graphs such as the star graph all
possible values of the Windfall of Friendship can be reach,
from constant ratios up to ratios linear in n, which is asymp-
totically maximal for general graphs as well since the Price
of Anarchy is bounded by n [1].

6. CONCLUSION
This paper has studied a virus inoculation game on social

networks. We have presented a framework which allows us
to quantify the effects of caring for direct neighbors on the
social network graph. We believe that our work opens many
exciting possibilities for future research. First, the analysis
of the Windfall of Friendship needs to be continued for other
graphs, e.g., random graphs with small world properties.
Moreover, the question of the existence of friendship Nash
equilibria needs to be addressed on general graphs. Observe



that while there are always Nash equilibria when players do
not care about each other, in the social setting, two play-
ers in the same attack component may not have the same
preferences on inoculation: one player can be discontent in
the same component where another player is happy with its
strategy. Participants in social networks are often involved
in very different kind of interactions, and hence, many other
games can be analyzed on these networks with our frame-
work. In this paper the players only care for their direct
neighbors. Investigating the effects of considering players
over multiple hops (maybe to a lesser extent) or letting the
metric distance between two players decide about their de-
gree of friendship, i.e. porting the Virus Inoculation Game
into the Euclidean space, are interesting research directions.
The virus game itself can also be extended of course. For
example, a virus might not infect unlimitedly many inse-
cure players that are adjacent to an already infected player.
Or there might be different kinds of viruses and different
kinds of nodes, which are resistant to some viruses but not
to others. Furthermore, one could also modify the under-
lying model by introducing malicious players in this social
adaption as well.
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