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Outline of this Talk

• Current research of our group at ETH
– Based on our papers at

IPTPS 2005 and IPTPS 2006

• Two challenges related to P2P topologies

CHALLENGE 1: Churn
•dynamics of P2P systems,
•i.e., joins and leaves of peers (“churn”)
•our approach to maintain desirable properties in 
spite of churn

CHALLENGE 2: Selfishness
•impact of selfish behavior on P2P topologies
•How bad are topologies formed by selfish peers?
•Stability of topologies formed by selfish peers?
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CHALLENGE 1:

Fast and Concurrent Joins and Leaves
(“Churn”)
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Dynamic Peer-to-Peer Systems

• Properties compared to 
centralized client/server 
approach
– Availability
– Efficiency
– Etc.

=> Peers may join and leave the network at any time!

• However, P2P systems are
– composed of unreliable 

desktop machines
– under control of individual 

users
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Churn

How to maintain desirable 
properties such as
– Connectivity,
– Network diameter,
– Peer degree?

Churn: Permanent joins and leaves
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Challenge 1: Churn

• Motivation for adversarial (worst-case) churn

• Components of our system

• Assembling the components 

• Results and Conclusion
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Motivation

• Why permanent churn?

Saroiu et al.: „A Measurement Study of P2P File Sharing Systems“
Peers join system for one hour on average

Hundreds of changes per second with millions of peers in 
the system!

• Why adversarial (worst-case) churn?

E.g., a crawler takes down neighboring machines (attacks 
weakest part) rather than randomly chosen peers!
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The Adversary

• Model worst-case faults with an adversary ADV(J,L,λ)

• ADV(J,L,λ) has complete visibility of the entire state of the system

• May add at most J and remove at most L peers in any time period 
of length λ

• Note: Adversary is not Byzantine!
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Synchronous Model

• Our system is synchronous, i.e., our algorithms run in rounds
– One round: receive messages, local computation, send 

messages

• However: Real distributed systems are asynchronous!
- Algorithms can still be used: local synchronizers

• Notion of time necessary to bound the adversary
- E.g. 1 round = max. RTT
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A First Approach

• What if number of peers is not 
2i?

• How to prevent degeneration?
• Where to store data?

Idea: Simulate the hypercube!

• Fault-tolerant hypercube?
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Simulated Hypercube System

Basic components:

Simulation: Node consists of several peers! Such a 
hypercube can be maintained against ADV(J,L,λ)!

• Route peers to sparse areas

• Adapt dimension

Token distribution algorithm!

Information aggregation

algorithm!
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Components: Peer Distribution and Information Aggregation

Peer Distribution
• Goal: Distribute peers evenly among all hypercube nodes in 

order to balance biased adversarial churn
• Basically a token distribution problem

Counting the total number of peers (information aggregation)
• Goal: Estimate the total number of peers in the system and adapt 

the dimension accordingly

Tackled next!
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Peer Distribution (1)

Algorithm: Cycle over dimensions and balance!

Perfectly balanced after d steps!
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Peer Distribution (2)

• But peers are not fractional!

• And an adversary inserts at most J and removes at most 
L peers per step!

Theorem 1: Given adversary ADV(J,L,1), discrepancy 
never exceeds 2J+2L+d!
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Components: Peer Distribution and Information Aggregation

Peer Distribution
• Goal: Distribute peers evenly among all hypercube nodes in 

order to balance biased adversarial churn
• Basically a token distribution problem

Counting the total number of peers (information aggregation)
• Goal: Estimate the total number of peers in the system and adapt 

the dimension accordinglyTackled next!
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Information Aggregation (1)

• Goal: Provide the same (and good!) estimation of the total number 
of peers presently in the system to all nodes
– Thresholds for expansion and reduction

• Means: Exploit again the recursive structure of the hypercube!
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Information Aggregation (2)

Algorithm: Count peers in every sub-cube by exchange 
with corresponding neighbor!

Correct number after d steps!
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Information Aggregation (3)

• But again, we have a concurrent adversary!

• Solution: Pipelined execution!

Theorem 2: The information aggregation algorithm yields 
the same estimation to all nodes. Moreover, this 

number represents the correct state of the system d 
steps ago!
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Composing the Components

• Our system permanently runs

– Peer distribution algorithm to balance biased churn

– Information aggregation algorithm to estimate total 
number of peers and change dimension accordingly

• But: How are peers connected inside a node, and how  are 
the edges of the hypercube represented?

• And: Where is the data of the DHT stored?
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Distributed Hash Table

• Hash function determines node 
where data item is replicated

• Problem: Peer which has to move 
to another node must replace all 
data items.

• Idea: Divide peers of a node into 
core and periphery
– Core peers store data,
– Peripheral peers are used for 

peer distribution
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Intra- and Interconnections

• Peers inside a node are 
completely connected.

• Peers are connected to all core 
peers of all neighboring nodes.
– May be improved: Lower peer 

degree by using a matching.
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Maintenance Algorithm

• Maintenance algorithm runs in phases
– Phase = 6 rounds

• In phase i:
– Snapshot of the state of the system in round 1
– One exchange to estimate number of peers in sub-cubes 

(information aggregation)
– Balances tokens in dimension i mod d
– Dimension change if necessary

All based on the snapshot made in round 1, ignoring the 
changes that have happened in-between!
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Results

• Given an adversary ADV(d+1,d+1,6)...
=> Peer discrepancy at most 5d+4 (Theorem 1)
=> Total number of peers with delay d (Theorem 2)

• ... we have, in spite of ADV(O(log n), O(log n), 1):

– always at least one core peer per node (no data lost!),

– peer degree O(log n) (asymptotically optimal!),

– network diameter O(log n).
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Discussion

• Simulated topology: A simple blueprint for 
dynamic P2P systems!
– Requires algorithms for token distribution and 

information aggregation on the topology.
– Straight-forward for skip graphs
– Also possible for pancake graphs!

( Diameter = Degree = O(log n / loglog n) )

• A lot of future work!
– A first step only: dynamics of P2P systems 

offer many research chellenges! 
– E.g.: Other dynamics models, self- 

stabilization after larger changes, etc.! 
– E.g.: Selfishness => see CHALLENGE 2
– E.g.: also measurment studies are subject to 

current research:
• Churn in file sharing systems?
• Churn in Skype? (=> IPTPS 2006)
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eQuus: An Alternative Approach with Low Stretch (1)

• eQuus
– Optimized for random joins/leavs rather than worst-cae
– Hypercube too restrictive 
– Token distribution is expensive
– Adding locality awareness!

• “Simulated Chord”
– Local split and merge only 
– According to constant thresholds
– Split operation according to latencies!
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eQuus: An Alternative Approach with Low Stretch (2)

• Split and merge happen seldom
– If joins and leave uniformly distributed:

balls-into-bins 
– Small stretches if nodes are uniformly 

distributed (= roughly direct paths used)
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CHALLENGE 2:

Selfish Peers
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Challenge 1 -> Challenge 2

• Simulated hypercube topology is fine…

• … if peers act according to protocol!

• However, in practice, peers can perform selfishly!
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Motivation

– CPU Cycles
– Memory
– Bandwidth
– …

Power of Peer-to-Peer Computing =

Accumulation of Resources of Individual Peers

Collaboration is of peers is vital!

However, many free riders in practice!
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Motivation

• Free riding 
– Downloading without uploading
– Using storage of other peers without contributing 

own disk space
– Etc.

• In this talk: selfish neighbor selection in unstructured P2P systems

• Goals of selfish peer: 

(1) Maintain links only to a few neighbors (small out-degree)

(2) Small latencies to all other peers in the system (fast lookups)

• What is the impact on the P2P topologies?
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Challenge 2: Road-Map

• Problem statement

• Game-theoretic tools

• How good / bad are topologies formed by selfish peers?

• Stability of topologies formed by selfish peers

• Conclusion
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Problem Statement (1)

• n peers {π0 , …, πn-1 }

• distributed in a metric space
– Metric space defines distances between peers 
– triangle inequality, etc.
– E.g., Euclidean plane

Metric Space
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Problem Statement (2)

• Each peer can choose…
– to which 
– and how many 
– … other peers its connects

πi

• Yields a directed graph G
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Problem Statement (3)

• Goal of a selfish peer:

(1) Maintain a small number of neighbors only (out-degree)

(2) Small stretches to all other peers in the system
- Only little memory used
- Small maintenance overhead

– Fast lookups!
– Shortest distance using edges 

of peers in G…
– … divided by shortest direct 

distance
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• Cost of a peer:
– Number of neighbors (out-degree) times a parameter α
– plus stretches to all other peers
– α

 

captures the trade-off between link and stretch cost

costi = α

 

outdegi + ∑i≠

 

j stretchG (πi , πj )

Problem Statement (4)

• Goal of a peer: Minimize its cost!
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Challenge 2: Road-Map

• Problem statement

• Game-theoretic tools

• How good / bad are topologies formed by selfish peers?

• Stability of topologies formed by selfish peers

• Conclusion
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Game-theoretic Tools (1)

• Social Cost
– Sum of costs of all individual peers:

Cost = ∑i costi = ∑i (α

 

outdegi + ∑i≠

 

j stretchG (πi , πj ))

• Social Optimum OPT
– Topology with minimal social cost of a given problem instance
– => “topology formed by collaborating peers”!

• What topologies do selfish peers form? 

=> Concepts of Nash equilibrium and Price of Anarchy
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Game-theoretic Tools (2)

• Nash equilibrium
– “Result” of selfish behavior => “topology formed by selfish peers”
– Topology in which no peer can reduce its costs by changing its neighbor 

set
– In the following, let NASH be social cost of worst equilibrium

• Price of Anarchy
– Captures the impact of selfish behavior by comparison with optimal 

solution
– Formally: social costs of worst Nash equilibrium divided by optimal 

social cost

PoA = maxI {NASH(I) / OPT(I)}
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Challenge 2: Road-Map

• Problem statement

• Game-theoretic tools

• How good / bad are topologies formed by selfish peers?

• Stability of topologies formed by selfish peers

• Conclusion
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Analysis: Social Optimum

• For connectivity, at least n links are necessary
– => OPT ≥

 

α

 

n

• Each peer has at least stretch 1 to all other peers
– => OPT ≥

 

n ·

 

(n-1) ·

 

1 = Ω(n2)

Theorem: Optimal social costs are at least

OPT ∈

 

Ω(α

 

n + n2)
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Analysis: Social Cost of Nash Equilibria

• In any Nash equilibrium, no stretch exceeds α+1
– Otherwise, it’s worth connecting to the corresponding peer
– Holds for any metric space! 

• A peer can connect to at most n-1 other peers

• Thus: costi ·

 

α

 

O(n) + (α+1)

 

O(n) 
=> social cost Cost ∈

 

O(α

 

n2)

Theorem: 

In any metric space, NASH ∈

 

Ο(α

 

n2)
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Analysis: Price of Anarchy (Upper Bound)

• Since OPT = Ω(α

 

n + n2) ...

• … and since NASH = O(α

 

n2 ), 

• we have the following upper bound for the price of anarchy:

Theorem: 

In any metric space, PoA ∈

 

Ο(min{α, n}).
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Analysis: Price of Anarchy (Lower Bound) (1)

• Price of anarchy is tight, i.e., it also holds that

Theorem: The price of anarchy is

PoA ∈

 

Ω(min{α

 

,n})

• This is already true in a 1-dimensional Euclidean space:

π1 π2 π3 π4 π5 πi-1 πi πi+1 πn

½ α ½ α2 α3 ½ α4 ½ αi-2 αi-1 ½αi ½ αn-1

…

…
…

…
Peer:

Position:
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Price of Anarchy: Lower Bound (2)

π1 π2 π3 π4 π5 πi-1 πi πi+1 πn

½ α ½ α2 α3 ½ α4 ½ αi-2 αi-1 ½αi ½ αn-1

…

…
…

…
Peer:

Position:

Note: Social optimum is at most O(α

 

n + n2):

To prove:
(1) “is a selfish topology” = instance forms a Nash equilibrium
(2) “has large costs compared to OPT”

= the social cost of this instance is Θ(α

 

n2)
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Price of Anarchy: Lower Bound (3)

• Proof Sketch: Nash?
– Even peers: 

• For connectivity, at least one link to a peer on the left is needed
• With this link, all peers on the left can be reached with an optimal stretch 1
• No link to the right can reduce the stretch costs to other peers by more than α

– Odd peers: 
• For connectivity, at least one link to a peer on the left is needed
• With this link, all peers on the left can be reached with an optimal stretch 1
• Moreover, it can be shown that all alternative or additional links to the right entail 

larger costs

1 2 3 4 5
½ α ½ α2 α3 ½ α4

…
…

…
6

α5
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Price of Anarchy: Lower Bound (4)

• Idea why social cost are Θ(α

 

n2): Θ(n2) stretches of size Θ(α)

• The stretches from all odd peers i to a even peers j>i have stretch > α/2

1 2 3 4 5
½ α ½ α2 α3 ½ α4

…
…

…

• And also the stretches between even peer i and even peer j>i are > α/2
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Price of Anarchy

• PoA can grow linearly in the total number of peers

Theorem: The price of anarchy is

PoA ∈

 

Θ(min{α

 

,n})

• PoA can grow linearly in the relative importance of degree costs α
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Challenge 2: Road-Map

• Problem statement

• Game-theoretic tools

• How good / bad are topologies formed by selfish peers?

• Stability of topologies formed by selfish peers

• Conclusion
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Stability (1)

• Peers change their neighbors to improve their individual costs. 

Theorem: 

Even in the absence of churn, peer mobility or other sources of 
dynamism, the system may never stabilize (i.e., P2P system 

never reaches a pure Nash equilibrium)!

• How long thus it take until no peer has an incentive to change its 
neighbors anymore? 
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Stability (2)

• Example for α=0.6

• Euclidean plane:

π1 π2

πa

πb πc

2-2δ

1

2+δ
22

1.96

2.14

δ…arbitrary small number
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Stability (3)

π1 π2

πa

πb πc

• Example sequence:

Again initial situation
=> Changes repeat forever!

• Generally, it can be shown that there is no set of links for 
this instance where no peer has an incentive to change.
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Stability (4)

• So far: no Nash equilibrium for α=0.6

Π1

• But example can be extended for α

 

of all magnitudes:
- Replace single peers by group of k=n/5 very close peers on a line
- No pure Nash equilibrium for α=0.6k

Π2

ΠcΠb

Πa

k
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Challenge 2: Road-Map

• Problem statement

• Game-theoretic tools

• How good / bad are topologies formed by selfish peers?

• Stability of topologies formed by selfish peers

• Conclusion
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Conclusion

• Unstructured topologies created by selfish peers

• Efficiency of topology deteriorates linearly in the relative importance of 
links compared to stretch costs, and in the number of peers

• Instable even in static environments

• Future Work:
- Complexity of stability? NP-hard!
- Routing or congestion aspects?
- Other forms of selfish behavior?
- More local view of peers?
- Mechanism design?
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Churn and Selfishness: Two P2P Challenges

Thank you for your attention!

Further reading:
1. “A Self-repairing Peer-to-Peer System Resilient to Dynamic 

Adversarial Churn”, Kuhn, Schmid, Wattenhofer; Ithaca, New York, USA, IPTPS 2005.
2.   “On the Topologies Formed by Selfish Peers”, Moscibroda, Schmid, Wattenhofer; Santa 

Barbara, California, USA, IPTPS 2006.
3. “eQuus – A Provably Robust and Efficient Peer-to-Peer System”, Locher, Schmid, 

Wattenhofer; submitted.

Questions? Comments?
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