
EVEGA: An Educational Visualization Environment for
Graph Algorithms

Sami Khuri
Dept of Math and Computer Science

San José State University
San José, CA 95192, USA

011−408−924−5081
khuri@cs.sjsu.edu

Klaus Holzapfel
Institut für Informatik

Technische Universität München
D−80290 München, Germany

49−89−289−28494
Klaus.Holzapfel@in.tum.de

ABSTRACT
This paper describes the package EVEGA (Educational
Visualization Environment for Graph Algorithms) and possible
ways of incorporating it into the teaching of algorithms. The
tool is freely available, platform− and network−independent,
and highly interactive. The tool is designed for three different
groups of users: students, instructors, and developers.
Interaction with EVEGA can be achieved through the
exploration of existing default visualizations, through the direct
manipulation of graphical objects, or through the
implementation and visualization of new algorithms using
existing classes.

1. INTRODUCTION
Some of the well−known problems covered in an undergraduate
course on the design and analysis of algorithms are those
dealing with graphs such as minimum spanning trees, shortest−
paths, maximum−flows, and both weighted and nonweighted
matching problems. These problems are motivated by real−
world examples and students learn about different strategies for
solving them. While the workings of the various algorithms can
be presented through static visualization on the white board or
overhead slides, there is a trend in CS education to make the
learning process more independent, individualized, interactive
and intuitive. Interactive algorithm visualizations can give the
students more autonomy in their learning process and
independent learning gives them a feeling of accomplishment
and also frees some of the instructor’s time. Students can
explore, discover and reach their own conclusions with only
minimal guidance. Programs may be individualized for each
student, providing an opportunity for self−paced learning.
Students are able to learn interactively by receiving feedback
provided either by the instructor, by their peers, or by a
program. Finally, intuitive learning: the ability to find solutions
via nontraditional or unexpected paths can be done through
visualizing a problem, and by graphing and modeling it.

There is a vast amount of research on different visualization
tools conducted over the years. While WWW has numerous
repositories of algorithm visualizations (see for example [6]),
the authors decided to design and implement yet another
visualization tool. The decision had been made because the
authors’ search for a tool suitable for teaching graph algorithm
was unsuccessful. There are many interesting and impressive
visualization packages, some of which have functionality similar
to that of EVEGA, but they were not suitable for the intended
use. Some of the existing tools are platform−dependent, such as
AVS [7], and LINK [1], or network−dependent, or they are not
freely available, such as CATBox [2].

EVEGA was designed for use in classroom demonstrations,
homework assignments, and analysis of algorithms. It can be
used by students, instructors, and developers or programmers.
The demarcation between these groups of users is sometimes
loose. A student for example, might play the role of the
developer when implementing a new algorithm for a semester
project.

The main scope of the tool is visualization of graph algorithms,
which allowed us to concentrate on interactivity, correctness and
attractiveness of the tool. Although the trend in algorithm
visualization research is to design general−purpose systems [6],
we believe that specialized tools are easier to use, maintain,
upgrade, and document. EVEGA is easy to interact with and is
platform− and network−independent. It is implemented as a
stand−alone Java application to accommodate students who have
different computer systems at home or no access to the Internet.

The rest of the paper is organized as follows. Section 2 presents
the functionality of EVEGA, and Section 3 shows how it can be
used as a lecture support tool. Section 4 describes EVEGA’s
framework for developing and visualizing algorithms. The paper
then gives an informal evaluation of the package and concludes
with some future directions in Section 5.

2. THE EVEGA PACKAGE
In designing EVEGA, we followed guidelines derived from our
experience in writing visualization tools and using them in the
classroom. EVEGA has consistent interface and visual
representations of algorithms and uses colors, multiple views,
and textual narratives. The most important issue in designing
algorithm visualization tools is that of interactivity, since it
distinguishes algorithm visualization systems from simple
drawings of an algorithm. Most of the algorithm visualizations
designed so far permit only limited forms of interaction, such as

stopping/starting the visualization or changing its speed.
EVEGA has a very high degree of interactivity providing
traditional as well as advanced features, such as the direct
manipulation of graphical objects. The "Editor" window,
displayed in Figure 1, is the interface between the end−users and
the tool. The main features of the "Editor" are the control
mechanisms, the graph drawing tool, the graph generators, the
error handling mechanism and the on−line help files.

One of the strong features of EVEGA is its interface for graph
drawing and editing. It is easy to directly manipulate and create
graphs. Graphs can be constructed by selecting one of the
options from the "Tools" menu or by using graph drawing icons
displayed on the left hand−side of the "Editor" window. The
user can, for example, select with the mouse one of the vertices
of the graph and move it to a new position, swap edges, create
edges and vertices, remove one of the graph elements, edit graph
properties, snap the graph to grid, and align it. Figure 1 displays
the process of constructing a new graph (which will be used in
the next sections), where the user is about to enter the value of
the capacity (the weight) of the edge going from vertex 2 to
vertex 6.

Figure 1. Using the " Editor " to create a flow network.

Another way of creating graphs is by using the built−in graph
generators. Four different graph generators [3] can be selected
from the "Generate graph" menu. This option is mainly used for
testing the performance of algorithms on large input graphs.

Automating the graph drawing has the following benefits to
EVEGA’s users. It can reduce students’ anxiety during graph
drawing and allow them to concentrate on what is really
important − the algorithm in question. Instructors’ time is also
spent more productively. They can quickly create or change the
graph for a new in−class demonstration or for answering "what−
if" questions. The graphs can be created in advance and saved
for later exploration. The developers of new algorithms do not
need to "re−invent" the wheel and just need to call methods of
existing classes.

In designing EVEGA, special attention has been paid to the
handling of erroneous user actions. In interactive systems, users
might press the wrong button, input invalid data, or manipulate
the wrong graphic object. Efforts have been made to prevent the
possibility of errors by having default values wherever possible.
The tool makes sure that number fields only accept numbers;
and it provides lists of choices or file selection dialogs rather
than asking users to type names. Error messages that clearly
state the mistake appear in pop−up windows.
EVEGA comes with on−line help. The help files are easy to
access, easy to exit from and provide specific and accurate
information. Students can learn how to use the package or read
about details of the algorithms.

3. USING EVEGA IN THE CLASSROOM:
AN EXAMPLE

This section describes how EVEGA can be used to explain
graph algorithms in class. For demonstration purposes, we
choose the maximum−flow algorithm. The explanation starts
with a real−life problem.

Example: The Andalucia Aceituna Company (AAC) buys black
and green olives from the farmers in Southern Spain and puts
them in jars in Málaga. The jars are placed in one−ton crates,
and are sent to Barcelona to be shipped to the rest of Europe.
AAC leases space on trucks from the Barcelona Camión
Company (BCC). The trucks of BCC travel over specified routes
between major cities in Spain and have only limited capacity
(the maximum number of crates that can be shipped over a
certain route) for AAC’s crates since BCC also does business
with other manufacturers. The goal of AAC is to ship the largest
number of crates per day that can reach Barcelona that same
day. Thus, the problem consists in finding an algorithm that will
output both, the largest possible number of crates that could be
shipped from the source to the destination, and the route for
such a shipment.

We then give a formal definition of the maximum−flow
problem. A flow network is a directed graph G = (V, E) with
two special vertices: the source s and the sink t. Each edge (u,
v) has a nonnegative capacity c(u, v) ≥ 0 and f(u, v) is the flow
from vertex u to vertex v. The value of a flow is the total net
flow out of the source and is denoted by |f|. The maximum−flow
problem consists in finding a flow of maximum value from the
source s to the sink t for a given flow network G [4].

We then use EVEGA (see Figure 1) to construct an example of a
flow for the AAC problem. Edge (u, v) is labeled with f(u,
v)/c(u, v) (see Figure 2). For example, AAC can move a
maximum number of 8 crates of olives from Salamanca to
Madrid, but the current flow is 5.

Upon computing the flow of the network given in Figure 2, we
get: |f| = 25. To motivate the algorithms for solving the AAC
problem, we ask students if 25 is the maximum possible flow
from Málaga to Barcelona.

Figure 2. An example of a flow for the AAC problem.

3.1 Preflow−push algor ithms
The algorithm can be understood by thinking of the flow
network as being a system of interconnected pipes. The vertices
are pipe junctions and each vertex u has an outflow pipe leading
to an arbitrarily large reservoir, e(u) to accommodate excess
flow and is on a platform whose height, h(u) increases as the
algorithm progresses. Flow is pushed from a high vertex to a
lower one. The order in which active nodes (nodes that have an
excess flow) are considered can be random, FIFO, or highest
label first (HLF). The FIFO preflow−push procedure maintains a
set list as a queue and consists of two parts:

Initialization: The sink is of height 0, vertices that share an
edge with t will be of height one, vertices two hops from t have
2 as initial height, etc. The initial height of the source is set to
|V|. The source’s excess flow is initialized to the sum of the
capacities of the edges leaving s. The excess flow and the height
of each vertex appear right underneath each vertex u. In Figure
3, 32/7 under node s means that the excess flow of s is 32 and
the vertex is of height 7. Initially, each edge leaving s is filled to
capacity; other edges carry no flow at all.

Push or Lift procedures: The algorithm selects the vertex u
from the front of the list, performs pushes from this node, and
adds newly active vertices to the rear of the queue. The
algorithm terminates when the queue of active nodes is empty.

In the example of Figure 3, vertices 2, 3, and 4 are active nodes.
In EVEGA, active nodes are colored in blue to differentiate
them from inactive (yellow) nodes. The queue of active nodes
(List = { 2,4,3}) is displayed in the right hand−side of Figure 3.
The algorithm next removes vertex 2 from the queue and
examines it. A push of 10 crates from vertex 2 to t is then
performed. Since node 2 gets rid of its excess overflow, it is not
an active vertex for the time being. The algorithm then considers
vertex 4 (the current node in List) and continues until the queue
of active nodes is empty.

While demonstrating the workings of the algorithm, the
instructor can step through the example, pause, ask students to
predict what will happen next, and check the visualization to see
if the predictions were correct.

Figure 3. Edges leaving s are filled to capacity.

In general, the design and study of an algorithm is followed by
its analysis. Most existing educational tools are designed and
used for explaining the steps of an algorithm, but only a few
allow the users to perform algorithm analysis. We have
implemented an analysis tool for the maximum−flow algorithms
that can be invoked in the "Editor" window. Analysis tools
similar to ours could easily be constructed to analyze other
algorithms. To perform the analysis of an algorithm, the user
needs the results of an algorithm’s run. The following statistics
are collected and displayed at the end of each algorithm’s run:
running time (total, push and adjustment phases), number of
push−operations (saturating and nonsaturating pushes), and the
number of relabel operations. Of course, the running time of an
algorithm is dependent on the running time of the visualization,
which is undesirable for the analysis of algorithms. So the user
can disable the visualization feature and collect the above
statistics for one or more algorithms. Finally, users can compare
the performance of their algorithm on various graphs or
different implementations of the same algorithm and display the
results graphically (see Figure 4).

Figure 4. Compar ison of FIFO and HLF.

4. USING EVEGA TO IMPLEMENT NEW
ALGORITHMS

Another useful and interesting way of using EVEGA is to have
students write their own implementations of algorithms. This
can be done in programming homework assignments or in a

semester−long project. As mentioned in Section 1, EVEGA is
implemented in the Java programming language and it includes
packages of classes that can be used to implement and visualize
new algorithms. To implement a new algorithm, the developer
has to extend an existing class and implement the run() method.
As mentioned in Section 2, users of EVEGA have access to the
documentation for developers generated using the javadoc
utility. See [5] for a more detailed description of the
implementation.

The advantage of these visual assignments and projects is the
students’ ability to see the results of their programs in graphical
form. The graders can also notice errors in the algorithm’s
implementation more easily. The programs have to be written in
Java, and the users can either use existing classes or implement
their own. Of course, projects of this sort are not suitable for
beginning students.

5. CONCLUSION
This paper introduced the Educational Visualization
Environment for Graph Algorithms. EVEGA can be used by
students, instructors, and developers. Instructors can use it to
explain the steps of a graph algorithm in the classroom. Students
can use EVEGA to explore algorithms on their own, and
developers can create new visualizations of graph algorithms by
using existing classes and methods. EVEGA offers a set of
powerful features to create and edit graphs, to display
visualizations and to perform comparisons of algorithms.
Our students like EVEGA and its features, but it is difficult to
measure its impact on the learning process quantitatively. We
performed an informal evaluation to test its strengths and
weaknesses. Students participating in the evaluation had already
studied maximum−flow algorithms in an algorithms and data
structures course and they rated their knowledge of these
algorithms as medium. They had never used visualization tools
before. As part of the evaluation, the students were asked to
create their own graphs, run the algorithms under different
parametric settings and comment on all aspects of the package,
such as the GUI, the graph drawing tool, and the colors. Overall,
students’ reaction was very favorable. They continued
experimenting with the tool even after returning the evaluation
forms. They found EVEGA extremely easy to use and easy to
understand. Students recommended a few small changes, some
of which we implemented.

Although EVEGA is very easy to use and fast to learn, it is
important to realize that it cannot be relied upon as a stand−
alone educational tool. As with any other visualization tool, it
must be carefully incorporated into, and supported by other
teaching techniques. The tool should be first demonstrated in
class by an instructor or by a teaching assistant in an open lab to
show the students its power. It does not replace the lecture, but
rather supplements it. Students should be encouraged to use the
visualization interactively to meet a set of objectives, and their
process should be monitored or scaffolded when learning by
exploration to keep them on track.

There are several directions for future work. First, additional
algorithms will be implemented and included as default settings.
Second, we are in the process of testing a client−server version
of EVEGA, as well as incorporating it into an electronic
textbook on graph algorithms. The EVEGA package is available
for download from http://www14.in.tum.de/EVEGA/index.html

6. ACKNOWLEDGEMENTS
The authors would like to thank Thomas Erlebach for his
guidance and comments during the MS writing project.

REFERENCES
[1] Berry, J., "Improving Discrete Mathematics and

Algorithms Curricula with LINK", Proceedings of
ITiCSE’97, ACM Press, pp. 14−20, 1997.

[2] "CATBox − the Combinatorial Algorithm Toolbox",
Springer Verlag, 2000.

[3]Cherkassky, B. and Goldberg, A., "On implementing push−
relabel method for the maximum flow problem", Technical
Report, CS Department, Stanford University, September,
1994.

[4] Cormen, T., Leiserson, C., and Rivest R., "Introduction to
Algorithms", MIT Press, Cambridge, 1990.

[5]Holzapfel, K., "WWW−Visualisierung und Analyse von
Push−Relabel−Flussalgorithmen" (in German), Masters
Thesis, Institut für Informatik, Technische Universität
München, 1999.

[6] Khuri, S., "Designing Effective Algorithm Visualizations",
invited lecture at the Program Visualization Workshop,
Porvoo, Finland, July 2000, available at
http://www.mathcs.sjsu.edu/faculty/khuri/animations.html.

[7]Shannon, G., MacCuish, J., and Johnson, E., "Animating
Maximum Flow Algorithms: A Case Study", Proceedings
of the DIMACS Algorithms Implementation Challenge:
Network Flows and Matching, 1991.

