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Institut für Informatik, Technische Universität München
Boltzmannstraße 3, D-85748 Garching b. München, Germany

{holzapfe | kosub | maass | taeubig}@in.tum.de

Abstract

We study the complexity of finding a subgraph of a certain size and a certain density,
where density is measured by the average degree. Let γ : N → Q+ be any density function,
i.e., γ is computable in polynomial time and satisfies γ(k) ≤ k − 1 for all k ∈ N. Then
γ-Cluster is the problem of deciding, given an undirected graph G and a natural number
k, whether there is a subgraph of G on k vertices which has average degree at least γ(k).
For γ(k) = k − 1, this problem is the same as the well-known clique problem, and thus NP-
complete. In contrast to this, the problem is known to be solvable in polynomial time for
γ(k) = 2. We ask for the possible functions γ such that γ-Cluster remains NP-complete
or becomes solvable in polynomial time. We show a rather sharp boundary: γ-Cluster is
NP-complete if γ = 2 + Ω( 1

k1−ε
) for some ε > 0 and has a polynomial-time algorithm for

γ = 2 + O( 1

k
).

Keywords. Density-based clustering, computational complexity, graph algorithms, fixed-
parameter problems.

1 Introduction

Density-based approaches are highly natural to network-clustering issues. Web communities,
for instance, both well-established and emerging have in common that they show a significantly
high ratio of linkage among their members (see, e.g., [17, 16, 18]). And, in VLSI layout design,
collapsing subgraphs of density beyond a certain threshold into one node provides the basis for
hierarchical graph-representation of large circuits to be decomposed (see, e.g., [7, 15, 1]).

The fundamental task in density-based clustering is finding a dense subgraph (cluster) of a
certain size. Density of a graph might be defined in several different ways. One can define the
density of an undirected graph on n vertices to be the ratio of the number of edges in the graph
and the maximum edge-number of an n-vertex graph. Thus, an n-vertex-clique has density one
and n isolated vertices have density zero. The definition is very intuitive and, in particular,
it enables to compare graphs of different sizes directly, regarding their densities. On the other
hand, since a number of edges quadratic in the number of vertices is required for a graph to be
dense, small graphs are biased. Therefore, density of undirected graphs is usually measured by
the average degree. A clique of size n clearly has average degree n − 1.

∗Research supported by DFG (Deutsche Forschungsgemeinschaft), grant Ma 870/6-1 (SPP 1126 Algorithmik
großer und komplexer Netzwerke); Research of the third and of the fourth author supported by DFG, grant
Ma 870/5-1 (Leibnizpreis Ernst W. Mayr).

1



The problem of deciding, given a graph G and natural numbers k and γ, if there exists a
k-vertex subgraph of G having average degree at least γ, is easily seen to be NP-complete. In
contrast to this variable cluster-detection problem, we focus in this paper on the fixed-parameter
cluster-detection problem, which we call γ-Cluster. That is, we fix density-parameter γ (which
generally may depend on an argument) and want to decide, given graph G and natural number k,
if there exists a k-vertex subgraph of G with average degree at least γ (or γ(k), more generally).
We are interested in what choices of γ still admit polynomial-time algorithms, and for which γ
the problem becomes NP-complete.

Studying the complexity of the fixed-parameter problem is motivated by at least two reasons.
First, knowing the precise boundary between polynomial-time and NP-complete cases is essen-
tial to obtain efficient methods for the above-mentioned clustering issues in several settings, e.g.,
Web graphs, where good choices of γ describe reality sufficiently. Second, if the polynomial-time
cases can be realized by a uniform algorithm (i.e., parameters t ≤ γ may be given to the in-
put), then we can approximate the maximum average degree reachable on n vertices in a graph

within factor n
γ
. The best algorithm known guarantees approximation within a factor n

1

3
−ε for

some ε > 0 [10]. Thus, we would outperform this algorithm if we find a (uniform) polynomial-

time algorithm for γ-Cluster up to little over n
2

3
+ε. Unfortunately, the boundary with the

NP-complete cases turns out to be much lower.

Previous Work

The problem of finding dense subgraphs has attracted a lot of attention in the context of com-
binatorial optimization.

Gallo, Grigoriadis, and Tarjan [12] showed, by using flow techniques, that there is a polynomial-
time algorithm for the densest subgraph problem, in which we are supposed to find a subgraph of
arbitrary size with highest average degree. Feige, Kortsarz, and Peleg [10] studied a restricted
version, which they called the dense k-subgraph problem, where we have to find a subgraph
with highest average degree among all subgraphs on k vertices. They provide a polynomial-time
algorithm that approximates the maximum average degree of such k-vertex subgraphs within
factor n

1

3
−ε for some ε > 0. Several authors proved approximation results for the dense k-

subgraph problem using different techniques, mainly greedy algorithms [4, 6] and semidefinite
programming [11, 20]. For special graph classes, they obtained partly better approximation
results. Arora, Karger, and Karpinski [2] showed that the dense k-subgraph problem on dense
graphs (i.e., with quadratic number of edges) admits a polynomial-time approximation scheme,
which has been improved by Czygrinow to a fully polynomial-time approximation scheme [8]. In
contrast to this, it is not known whether the dense k-subgraph problem on general graphs is not
approximable within factor (1 + ε) for all ε > 0 (unless P = NP or similar complexity-theoretic
collapses), although it is even conjectured that the problem is hard to approximate within factor
nε for some ε > 0 [10].

Fixed-parameter problems were also considered in our setting. Nehme and Yu [19] investi-
gated the complexity of the constrained maximum value sub-hypergraph problem, which con-
tains the dense k-subgraph problem as a special case. They obtained bounds on the number of
(hyper-)edges a (hyper-)graph may have, such that the problem is still polynomial-time solv-
able, namely, n − s + α log n, where n is the number of vertices, s the number of connected
components, and α any constant. Similar fixed parameter-restrictions to the input graphs were
also considered in [4, 3]. Note that this scenario has no consequences for our problem since these
restrictions affect the graph outside of possible dense subgraphs, and we are interested in the
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existence of dense subgraphs of fixed quality inside an arbitrary graph.
Most recently, Asahiro, Hassin, and Iwama [3] studied the k-f(k) dense subgraph problem,

(k, f(k))-DSP for short, which asks whether there is a k-vertex subgraph of a given graph G
which has at least f(k) edges. This problem is almost the same problem as our γ-cluster problem,

since obviously, a k-f(k) subgraph has average degree at least 2f(k)
k

. The authors proved that
the problem remains NP-complete for f(k) = Θ(k1+ε) for all 0 < ε < 1 and is polynomial-time
solvable for f(k) = k. From this results we can conclude that γ-Cluster is NP-complete for
γ = Θ(kε) for any 0 < ε < 1, and is decidable in polynomial time for γ = 2. Feige and Seltser
[11] even proved that (k, f(k))-DSP is NP-complete if f(k) = k + kε (which, in our notation,
is γ = 2 + 2kε−1) for any 0 < ε < 2. We will enhance those bounds to more general settings.

This Work

In this paper we show that γ-Cluster is polynomial-time solvable for γ = 2 + O( 1
k
) and that

γ-Cluster is NP-complete for γ = 2+Ω( 1
k1−ε ) for 0 < ε < 2. We thus establish a rather sharp

boundary between polynomial time solvable and NP-complete cases. As a corollary we obtain,
for the more intuitive case of γ constant, that detecting a k-vertex subgraph of average degree
at least two (which is nearly the case of any connected graph) can be done in polynomial time
whereas finding a k-vertex subgraph of slightly-higher average degree at least 2 + ε is already
NP-complete. Thus, density-based clustering is inherently hard as a general methodology.

In terms of the (k, f(k))-DSP our results mean that (k, f(k))-DSP remains NP-complete
if f(k) = k + Ω(kε) for any 0 < ε < 2, which, for ε ≤ 1, is more precise than in [3, 11], and is
polynomial-time decidable for f(k) = k + c for all (constant) integers c.

The proof of the polynomial-time cases is mainly based on dynamic programming over col-
lections of minimal subgraphs having certain properties. For instance, for the above-mentioned
polynomial-time result for (k, f(k))-DSP with f(k) = k [3], we simply need to find shortest
cycles in a graph, which is easy. For functions f(k) = k + c with c > 0, the search for similar
minimal subgraphs is not obvious to solve and is the main difficulty to overcome in order to
obtain polynomial-time algorithms. In the NP-hardness proofs we adapt techniques used by
[3, 11], that are well suited for Θ-behavior of functions but lead to different reductions according
to the different growth classes. Thus the main issue for getting results for Ω-behavior is to unify
reductions by a non-trivial choice of the parameters involved.1

2 Definitions and Main Results

Throughout this paper we consider undirected graphs without loops. Let G be any graph. V (G)
denotes the set of vertices of G and E(G) denotes the set of edges of G. The size of a graph
is |V (G)|, i.e., the cardinality of V (G). For any function γ : N → Q+, graph G is said to be

1Basically, having Turán’s theorem [21] in mind, one could ask whether it is possible, at least in the case of dense
graphs, to deduce intractability results using inapproximability of Maximum Clique due to H̊astad [14]: there

is no polynomial-time algorithm finding cliques of size at least n
1

2
+ε (where n is the size of the maximum clique)

unless P = NP. Assume we would have a polynomial-time algorithm for γ-Cluster with, e.g., γ(k) = β
�
k

2 � and

0 < β < 1, are we now able to decide whether there is a clique of size k
1

2
+ε? Turán’s theorem [21] says that there

is a clique of size k in a graph with n vertices and m edges, if m > 1

2
n2 k−1

k−2
. Unfortunately this implies that we

can only assure that in a graph with n vertices and at least β
�
n

2 � edges, there is a clique of size at most 3−2β

1−β
,

which is constant and makes the argument fail.
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a γ-cluster if and only if d(G) ≥ γ
(

|V (G)|
)

where d(G) denotes the average degree of G, i.e.,
d(G) = 2|E(G)|/|V (G)|.

We study the complexity of the following problem. Let γ : N → Q+ be any function.

Problem: γ-Cluster

Input: A graph G and a natural number k
Question: Does G contain a γ-cluster of size k?

Note that 0-Cluster is a trivial problem and that (k − 1)-Cluster = Clique. Moreover, it
is easily seen that γ-Cluster is in NP whenever γ is computable in polynomial time. The
following theorem expresses our main results on detecting fixed-density clusters.

Theorem 1. Let γ : N → Q+ be computable in polynomial time, γ(k) ≤ k − 1.

1. If γ = 2 + O( 1
k
), then γ-Cluster is solvable in polynomial time.

2. If γ = 2 + Ω( 1
k1−ε ) for some ε > 0, then γ-Cluster is NP-complete.

In the remainder of the paper we prove Theorem 1. Section 3 contains the polynomial-time
cases. Section 4 establishes the NP-completeness statements of Theorem 1.

3 Computing (2 + O(1
k
))-dense Subgraphs in Polynomial Time

In this section we show how to solve γ-Cluster for γ = 2 + O( 1
k
) in polynomial time. In other

words, we prove that searching a k-vertex subgraph with at least k + c edges with c constant is
a polynomial-time problem. We will formalize this issue in the problem Excess-c Subgraph.

For a graph G, let the excess of G, denoted by ν(G), be defined as ν(G) = |E(G)| − |V (G)|.
A (sub)graph G with ν(G) ≥ c is said to be an excess-c (sub)graph.

Problem: Excess-c Subgraph

Input: A graph G and natural number k
Question: Does G contain an excess-c subgraph of size k?

We will show how to find excess-c subgraphs in polynomial time. The general solution is based
on the case of a connected graph which is handled by the following lemmas:

Lemma 2. Let c ≥ 0 be any integer. Given a connected graph G on n vertices, an excess-c
subgraph of minimum size can be computed in time O(n2c+2).

Proof. Let G be any connected graph with ν(G) ≥ c. Then there exists a subgraph Gc of
minimum size with excess c. For the degree-sum of Gc we obtain

∑

v∈V (Gc)

degGc
(v) = 2|E(Gc)| = 2(|V (Gc)| + c).

Since Gc is minimal subject to the number of vertices, there exists no vertex with degree less
than two. Therefore the number of vertices with degree greater than two in Gc is at most

∑

v∈V (Gc)

(degGc
(v) − 2) = 2(|V (Gc)| + c) − 2|V (Gc)| = 2c.
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Let S be the set of all vertices with degree greater than two in Gc. If there is a path connecting
vertices u, v ∈ S using only vertices from V (Gc) \ S (u and v are not necessarily distinct),
then there can be no shorter path connecting u and v containing vertices from V (G) \ V (Gc).
Otherwise Gc would not be minimal subject to the number of vertices. In the following we will
describe how to find such a subgraph Gc if it exists.

We examine all sets S ′ ⊆ V (G) of size at most 2c such that S ′ contains only vertices with
degree greater than two in G, i.e., the elements of S ′ are those vertices where paths can cross.
For such a set we can iteratively construct a candidate H(S ′) for Gc. In each step we include a
path which has minimum length among all paths that connect any two vertices in S ′. We may
restrict ourselves to those paths that do not intersect or join common edges, since otherwise
H(S′) can be also obtained by one of the other possible choices of a set S ′. This process is
done until either excess c is reached or no further connecting path exists. In the latter case
the set S′ does not constitute a valid candidate for Gc. Otherwise H(S ′) is kept as a possible
choice for Gc. After considering all possibilities for S ′, the graph Gc can be chosen as a vertex-
minimal subgraph among all remaining candidates. Note that Gc is not unique with respect to
exchanging paths of the same length.

Since, |S ′| ≤ 2c, there are
2c
∑

i=1

(

n

i

)

= O(n2c)

possible choices for S ′. For the verification of a chosen set S ′ consisting of i vertices we have to
find iteratively i + c shortest non-crossing paths, e.g., by using i + c ≤ 3c parallel breadth-first-
search runs, which takes time O(3c|E(G)|) = O(n2).

Finally, this implies that determining an excess-c subgraph of minimum size by testing all
possible choices of S ′ can be done in total time O(n2c+2). Note that for c = 0 we only have to
find a shortest cycle (e.g., by breadth-first search) which can be done in time O(n2). ❑

Unfortunately the algorithm of Lemma 2 cannot directly be used for the general case of possibly
non-connected graphs. For those graphs vertices from different connected components may be
chosen. Therefore our algorithm is based on solving the subproblem of maximizing the excess
for a given number of vertices within a connected graph.

Lemma 3. Let c ≥ 0 be any integer. Given a connected graph G with n vertices. Let νi

be the maximum excess of an i-vertex subgraph of G. Calculating min{νi, c} for all values of
i ∈ {0, 1, . . . , n} can be done in time O(n2c+2).

Proof. There are some basic observations. First of all, ν0 = 0. Also, since G is connected,
νi ≥ −1 for all i ∈ {1, 2, . . . , n}. Furthermore, due to the connectivity of G the subgraph can
iteratively be extended without decreasing the excess. Thus, if there exists a subgraph on i
vertices having excess νi, the value νi is a lower bound for the maximum excess of subgraphs
with more vertices. Therefore it is sufficient to know the minimum number of vertices necessary
to achieve excess c (as done in Lemma 2).

The maximum excess we are interested in is bounded from above by c. We get the minimum
number of vertices needed for all possible values of ν ∈ {0, 1, . . . , n} by performing c+1 iterations
of the algorithm of Lemma 2. Using these results we can easily calculate for each i ∈ {0, 1, . . . , n}
the desired value min{νi, c}. This takes total time O(n2c+2). ❑

5



Before we proceed to the main theorem we have to discuss a further property. Let (G, k) be
the instance of the Excess-c Subgraph problem, i.e., we have to find a subgraph of G on k
vertices with at least k + c edges. In linear time we can (as a preprocessing step) partition
G into its connected components and calculate their excess. Let C1, . . . , Cr be the list of the
components, sorted non-increasingly by their excess. Note that ν(Cj) ≥ −1 since all components
are connected. Let j0 denote the maximum index of the components with non-negative excess
and k0 the total number of all vertices of those components.

Lemma 4. 1. If k > k0 then there is a maximum excess subgraph comprising all vertices
from the non-negative excess components C1, . . . , Cj0 .

2. If k ≤ k0 then there always exists a subgraph of size k having maximum excess within G
and consisting only of vertices from components with non-negative excess.

Proof. Let G′ be an induced subgraph of G. Assume that G′ contains vertices of a component Ci

with negative excess while there exists a component Cj with positive excess that is not contained
entirely.

If at least one vertex in Cj is selected, there exists another so far not selected vertex v in Cj

that is adjacent to G′. Since Ci must be a tree, there must exist a selected vertex u ∈ Ci that
is a leaf in the selection, i.e., it is incident to at most one edge in G′. By exchanging u and v,
no excess is lost.

Otherwise, no vertex in Cj is selected. Once again we exchange leaves from Ci with connected
vertices from Cj . There are two possibilities. First, if Cj is selected entirely, we cannot lose
excess because ν(Cj) ≥ 0. Second, if all vertices of Ci were exchanged, once again we cannot
lose excess since ν(Ci) = −1 and Cj is connected (and thus has excess at least −1).

This process can be iterated until there are no vertices selected from components with neg-
ative excess or all components with positive excess are contained entirely. ❑

With these results we are able to state the main theorem of this section.

Theorem 5. Let c be any integer. Excess-c Subgraph can be decided in time O(n2|c|+4).

Proof. Let c be any fixed integer. Let (G, k) be a problem instance. The problem can be divided
into two cases.

In the first case, where k ≥ k0, the problem can be solved straightforward. Because of Lemma
4, there exists a maximum-excess subgraph on k vertices that contains all components with non-
negative excess entirely. Therefore all remaining vertices must be chosen from the components
with negative excess. Those components are trees (each having excess −1 by definition) and
thus the selected vertices within these components induce a forest. Since we want to maximize
the excess, we have to minimize the number of trees. Therefore, as long as possible, we choose
complete components ordered by non-increasing size (i.e., largest trees first). From the next
component we choose a subtree of sufficient size, to get exactly the desired number of vertices.
This procedure determines the minimum number of trees to choose. Finally, the maximum
excess of a subgraph of G on k vertices can be evaluated by adding up the excess of all used
components. Obviously, in this case the time bound of the theorem holds.

In the other case, k < k0, we may restrict our choice to those components with non-negative
excess. We show that it is sufficient to calculate separately for each such component the minimum
size of subgraphs for all values of excess within the fixed range {0, 1, . . . , c + 1}. The original
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initialize the arrays X and Y
for all j ∈ {1, . . . , j0} do

for all i ∈ {1, . . . ,min(|V (Cj)|, k)} do

for all l ∈ {0, . . . , k − i} do

if Y [l + i] < X[l] + Aj[i] then

Y [l + i] = X[l] + Aj [i]
copy array Y to X

Figure 1: Algorithm for excess-aggregation of connected components.

problem can be decided by combining these solutions. For each component Cj we create an
array Aj. At index i ∈ {0, 1, . . . , |V (Cj)|} we will store the maximum excess for any (induced)
subgraph of component Cj on i vertices. As we will see later values larger than c + 1 are of no
interest. In these cases the lower bound c + 1 will be used instead. Note that the maximum
excess cannot decrease with larger induced subcomponents, because we can simply add vertices
that are connected to the subgraph. Due to Lemma 3 array Aj can be calculated in time
D|V (Cj)|

2(|c|+1)+2 for some D > 0. Hence, the total time to calculate the values for Aj for all
components is

r
∑

j=1

D|V (Cj)|
2(|c|+1)+2 ≤ D

(

r
∑

j=1

|V (Cj)|

)2|c|+4

= D|V |2|c|+4.

Based on the results of the calculation we can distinguish two different cases.

• If there exists a component that contains an excess-(c + 1) subgraph on k1 ≤ k vertices,
we can choose this subgraph and add a sufficient number k − k1 of vertices such that the
excess decreases by at most one. This can be achieved by appending remaining vertices of
the component, adding entire so far unused components (with excess ν ≥ 0) and adding
at most one incomplete component (a connected subgraph with excess ν ≥ −1).

• Otherwise, for the second case, all excess-(c + 1) subgraphs of any component have more
than k vertices. Assuming that we already calculated the values of the arrays Aj , we can
compute the maximum excess of a k-vertex subgraph from G by considering suitable sub-
sets of the components. Therefore we have to decide how many vertices of each component
have to be selected.2

From each component Cj at most min(|V (Cj)|, k) vertices can be selected. Remember
that the corresponding maximum excess is stored in Aj . We iterate over all components
and within the components over all possible subgraph-sizes and store the currently best
sub-result in array X. Thus after each iteration X[i] contains the maximum possible excess
for an i-vertex subgraph of the so far processed components. Finally X[k] contains the
value of the maximum excess for any subgraph on k vertices. Thus, it can be decided
whether there exists an excess-c subgraph of size k. Figure 1 shows an algorithm for this
calculation in pseudo-code.

2Note that this problem is a variant of Subset Sum, using a set of integer-intervals � {0, 1, . . . , |V (Cj)|} �� 0 ≤
j ≤ j0 � . Despite Subset Sum is NP-complete, this problem can be solved in polynomial time, because of the
present unary representation of n.
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Since the total size of all components is bounded by n (first and second loop) and k ≤ n
(third loop) the total calculation cost is O(n2) . ❑

So far we only considered the Excess-c Subgraph problem for constant values c. If we are
interested in a k-vertex subgraph with excess f(k) = O(1), the same method can be applied.
From f = O(1) we know that f(k) is bounded from above by a constant c′. Obviously the
time complexity for our algorithm is O(n2c′+4), if f(k) can be computed in the same time. This
problem corresponds to finding a (k + O( 1

k
))-dense subgraph. Applying some modifications the

method can be used to find such a subgraph instead of only deciding its existence.

Corollary 6. For polynomial-time computable γ = 2 + O( 1
k
), γ-Cluster is is solvable in

polynomial time and, moreover, finding a γ-cluster is solvable in polynomial time.

Similarly, the problem can be examined for f = O(log k) which leads to a quasi-polynomial
time algorithm.

Corollary 7. 1. For polynomial-time computable γ = 2 + O( log k
k

), finding γ-clusters can be

done in time nO(log n).

2. Let γ = 2 + Θ( log k
k

) be polynomial-time computable. If γ-Cluster is NP-complete, then

NP ⊆ DTIME(nO(log n)).

4 Finding (2 + Ω( 1
k1−ε ))-dense Subgraphs is NP-complete

In this section we prove that all γ-Cluster problems are complete for NP if γ = 2 + Ω( 1
k1−ε )

for some ε > 0. In doing so, we focus on the (k, f(k))-DSP, namely, we show that (k, f(k))-DSP
is NP-complete whenever f = k + Ω(kε).

For this, we need the concept of a quasi-regular graph. A graph G is said to be quasi-regular
if and only if the difference between the maximal and the minimal degree of the vertices in G is
at most one.

Proposition 8. For every n ≥ 0 and 0 ≤ m ≤
(

n
2

)

both given in unary (i.e., as inputs 1n

and 1m), a quasi-regular graph having exactly n vertices and m edges can be computed in time
polynomial in the input length.

Proof. Define d∗ =def d
2m
n
e and d∗ =def b

2m
n
c. Then there are two distinct cases: Either d∗ is

even or d∗ is even. First, let d∗ be even. Compute a d∗-regular graph (by considering n vertices
to be circularly ordered and connecting each vertex with its d∗/2 left and its d∗/2 right neighbors
in the circuit) and add a matching of size m − (d∗/2)n. This is possible since

m −
d∗n

2
≤ m −

(

2m

n
− 1

)

n

2
=

n

2
.

If d∗ is even then compute a d∗-regular graph and remove an existing matching of size (d∗/2)n−
m. Analogously to the other case this is possible since

d∗n

2
− m ≤

(

2m

n
+ 1

)

n

2
− m =

n

2
.

Clearly the graphs can be computed in time polynomial in the values of the inputs, and hence
polynomial in the length of the unary representations of n and m. ❑
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Theorem 9. Let f : N → N be a polynomial-time computable function such that f = k + Ω(kε)
for some ε > 0 and f(k) ≤

(

k
2

)

. Then, (k, f(k))-DSP is NP-complete.

Proof. Let f be a polynomial-time computable function with f = k + Ω(kε) for some rational
ε > 0 and f(k) ≤

(

k
2

)

. Containment of (k, f(k))-DSP in NP is obvious. We prove the NP-
hardness of (k, f(k))-DSP by reduction from a special version of Clique which will be explained
below. Since there are several cases to be handled we need different constructions. However, in
each of this constructions the following three operations (with parameters from N) on graphs
are involved (exactly ordered as listed below).

• Rs: Let G be any undirected graph. Define the following sequence of graphs: G0 =def G
and, for j > 0, Gj =def h(Gj−1) where h transforms a graph I by adding to I a new vertex
which has an edge to each vertex in I. Define Rs(G) =def Gs. Obviously, the following
property holds:

G has a clique of size k ⇐⇒ Rs(G) has a clique of size k + s. (1)

The operator Rs can be used to define a special NP-complete version of Clique (see,
e.g., [3]). Define Clique 1

2

to be the set of all instances (G, k) such that G has a clique

of size k and it holds |V (G)| ≤ (1 + 1
2)k. It is easily seen that Clique can be reduced

to Clique 1

2

, namely by applying Rs to a graph G with parameter s = 2|V (G)| − 3k

for each instance (G, k) with |V (G)| > (1 + 1
2)k. The transformed graph Gs now has

|V (G)|+ s = 1
2s + (1 + 1

2)k + s = (1 + 1
2)(k + s) vertices, and using (1) the new clique-size

Gs is asked for, is k + s.

• St: Let G be any undirected graph. St transforms G to a graph Gt by replacing each edge
in G by a path of length t + 1 involving t new vertices. The new vertices are referred to
as inner vertices and the old vertices are referred to as outer vertices. Note that inner
vertices always have degree 2 and that an outer vertex has equal degrees in Gt and in G.
It is easily seen that cliques in G of size k ≥ 3 are related to subgraphs of Gt as follows
(for formal proofs, see, e.g., [9, 13, 11]):

G has a clique of size k ⇐⇒ St(G) has a subgraph with k + t
(

k
2

)

vertices and

(t + 1)
(

k
2

)

edges. (2)

• T α
r,N(r) (with α ∈ {0, 1}): Let G be any undirected graph. T 0

r,N(r) transforms G by the

disjoint union with a quasi-regular graph A(r,N(r)) with r vertices and N(r) edges. In
transformations by T 1

r,N(r), we additionally have edges between each vertex in A(r,N(r))
and each vertex in G.

Note that all these operations are monotonic, i.e., if G is a subgraph of H, then the transformed
graph of G is a subgraph of H transformed by the same operations with same parameters.

Let us first consider an arbitrary function f : N → N in order to explain the general outline
of the proof. Let (G, k) be any instance to Clique 1

2

with |V (G)| ≤ 3
2k. We will construct a

new graph G′ such that G has a clique of size k if and only if G′ has a subgraph of size k′ with
at least f(k′) edges. Define G′ =def (T α

r,N(r) ◦ St ◦ Rs)(G)3 and let the parameters s, t, r, α be

3Our usage of f ◦ g is (f ◦ g)(x) =def f(g(x)).
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fixed. The parameter N(r) will be defined as

N(r) =def f(k + s + t

(

k + s

2

)

+ r) − (t + 1)

(

k + s

2

)

− αr

(

k + s + t

(

k + s

2

))

.

Suppose for the moment that N(r) ≥ 0. We have to prove two cases.
For the first case, assume that G has a clique of size k. Let C be such a clique. We consider

the graph C ′ defined as C ′ =def (T α
r,N(r) ◦St ◦Rs)(C). Thus, C ′ is a subgraph of G′ and we have

|E(C ′)| = (t + 1)

(

k + s

2

)

+ N(r) + αr

(

k + s + t

(

k + s

2

))

.

Hence, C ′ is a subgraph of G′ of size k + s+ t
(

k+s
2

)

+ r with at least f(k + s+ t
(

k+s
2

)

+ r) edges.
For the second case, assume that G does not contain a clique of size k. We must show that in

this case each subgraph of G with k+s+t
(

k+s
2

)

+r vertices has less than f(k+s+t
(

k+s
2

)

+r) edges.
To do so, we first determine a subgraph with maximum number of edges among all subgraphs of
G′ on k+s+t

(

k+s
2

)

+r vertices. In particular, we will guarantee that there exists such a subgraph
containing entirely the graph A(r,N(r)). Let H be the induced subgraph of G ′ containing no
vertices of A(r,N(r)). Let l = k + s+ t

(

k+s
2

)

. Let X be any induced subgraph of G′ having l+ r
vertices. Thus there is a z with 0 ≤ z ≤ r (more precisely, z ≤ min{r, |V ((St ◦ Rs)(G))| − l})
such that l + z vertices of X belong to H and r − z vertices of X belong to A(r,N(r)). Let Y
be an induced subgraph which results from replacing, in a certain way, z vertices in X which
belong to H by the remaining z vertices of A(r,N(r)) which are not in X. Note that, if t ≥ 1,
then the vertices in H can be iteratively removed in such an order that always a vertex with
degree at most 2 is removed (simply by removing first all the inner vertices around an outer
vertex and then the outer vertex which now has degree 0). We are done if we can show that
|E(Y )| ≥ |E(X)| since, by using Properties (1) and (2), we can argue as follows. Let J be a
subgraph of H of size l with maximum number of edges. Then the graph C ′ =def Tα

r,N(r)(J) has

the maximum number of edges among all subgraphs of G′ on k′ vertices. For the number of
edges of C ′ we easily obtain

|E(C ′)| = |E(J)| + N(r) + αrl ≤ (t + 1)

(

k + s

2

)

− 1 + N(r) + αr

(

k + s + t

(

k + s

2

))

= f(k + s + t

(

k + s

2

)

+ r) − 1.

Hence, G′ does not contain a subgraph with k + s + t
(

k+s
2

)

+ r vertices and at least f(k + s +

t
(

k+s
2

)

+ r) edges.
In order to make these arguments work we have to choose all the parameters such that the

following two conditions can be satisfied:

• Constructibility: We have to guarantee that the graph G′ can be computed in polynomial
time. Obviously the operations Rs and St are polynomial computable if parameters s
and t can be computed in polynomial time. We further have to show that the graph
A(r,N(r)) exists and can be computed in polynomial time. The latter condition is assured
by Proposition 8 since r will depend polynomially on k which is logarithmic in the size of
the graph, thus a unary description of r can be computed in polynomial time. It remains
to show that N(r) ≥ 0 and N(r) ≤

(

r
2

)

. Usually, N(r) ≥ 0 is easily seen and it is often
proved together with the next condition.

10



• Exchangeability: This condition refers to the claim |E(Y )| ≥ |E(X)| used above. Note
that the claim is trivial for z = 0. For z ≥ 1 we consider the edge balance of transforming
X into Y . In the case of α = 0, which is the majority of our cases, we will argue as
follows. On the one hand, we remove at most ∆z edges from H, for some ∆. On the
other hand we add at least 1

2b
2N(r)

r
cz edges in A(r,N(r)) It is thus sufficient to satisfy

that 1
2b

2N(r)
r

cz ≥ ∆z or, if 2∆ ∈ N, equivalently, N(r)
r

≥ ∆. In the cases with α = 1 we
will employ more refined arguments.

Since f = k + Ω(kε) for some rational ε > 0, there exists a natural number D > 1 such that
for some k0 ∈ N, k + D−1kε ≤ f(k) for all k ≥ k0. Obviously, we may suppose that ε < 1

8 and
D ≥ 5. Since we will have to respect several finer growth-classes the function f might belong
to, we choose one argument k′ to distinguish between these different classes. Define

k′ =def

⌈

(

D6k2
)

1

ε

⌉

.

Clearly, k′ is computable in time polynomial in the length of k. Depending on the function value
f(k′) we choose different parameters s, t, r, and α, such that k ′ = k + s + t

(

k+s
2

)

+ r to obtain
the graph G′. We distinguish between five cases that represent a partitioning of the interval
between k′ + D−1k′ε and

(

k′

2

)

.

Case I. Let k′ +D−1k′ε ≤ f(k′) < k′ +Dk′. We split this case in several subcases. We consider,

depending on j with 0 ≤ j < log 7

6

1
ε
, the ranges k′ + D−1k′( 7

6 )
j
ε ≤ f(k′) ≤ k′ + Dk′( 7

6 )
j+1

ε.

Clearly, we can combine those subcases to cover the complete range from k ′ +D−1k′ε to k +Dk′

as required for Case I. For each value of j we apply Rs, St, and T α
r,N(r) with the following

parameters:

s = 0, t = (k′ − r − k)/
(

k
2

)

, α = 0,

r =
⌈

(4D4k2)(
7

6)
j⌉

+
[(

k′ −
⌈

(4D4k2)(
7

6 )
j⌉

− k
)

mod
(

k
2

)

]

Note that t ∈ N by the modular term in the definition of r. Trivially, we have k + s + t
(

k+s
2

)

+

r = k + t
(

k
2

)

+ r = k′. For k large enough (and thus k′ and r as well) constructibility and
exchangeability can be satisfied as can be seen by the following calculations.

• Constructibility:

N(r) ≤ k′ + Dk′( 7

6)
j+1

ε − (t + 1)

(

k

2

)

= r + Dk′( 7

6 )
j+1

ε −

(

k

2

)

+ k

≤ r + D
(

2D6k2
)

7

6(
7

6 )
j

≤ r +
(

3D8k3
)( 7

6)
j

≤
(

(2D4k2)(
7

6)
j)2

≤

(

1

2
r

)2

≤

(

r

2

)

• Exchangeability: Since t ≥ 1 for k > 0, we can choose ∆ = 2 and we obtain the following:

N(r) ≥ k′ + D−1k′( 7

6)
j
ε − (t + 1)

(

k

2

)

≥ r + D−1
(

(D6k2)
1

ε

)( 7

6)
j
ε

−

(

k

2

)

+ k

≥ r + (D5k2)(
7

6 )
j

− k2 ≥ 2r
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Case II. Let k + Dk′ = (1 + D)k′ ≤ f(k′) < (1 + D)k′
3

2 . Apply Rs, St, and T α
r,N(r) with the

following parameters (ε < 1
8 ):

s = 0, t = 1, α = 0, r = k′ −

(

k

2

)

− k

Clearly, we have k + s+ t
(

k+s
2

)

+ r =
(

k+1
2

)

+ r = k′. For k large enough (and thus k′, r as well),
constructibility and exchangeability can be satisfied as can be seen by the following calculations.

• Constructibility:

N(r) ≤ f(k′) ≤ (1 + D)

(

r +

(

k + 1

2

))
3

2

≤
3

2
D(2r)

3

2 ≤
9

2
Dr

3

2 ≤
1

4
r2 ≤

(

r

2

)

• Exchangeability: Since t = 1 we can choose ∆ = 2 and we have the following:

N(r) ≥ (1 + D)

(

r + k +

(

k

2

))

− 2

(

k

2

)

≥ (1 + D)r + (D − 1)

(

k

2

)

≥ 2r.

Case III. Let (1 + D)k′
3

2 ≤ f(k′) <
(

k′

2

)

− k′
9

8 . Apply Rs, St, and T α
r,N(r) with the following

parameters:
s = 0, t = 0, α = 0, r = k′ − k

Obviously, k + s + t
(

k+s
2

)

+ r = k + r = k′. Note that since ε < 1
8 we have k2 ≤ k′ 1

8 . For k large
enough (and thus k′, r as well), constructibility and exchangeability can be satisfied as can be
seen by the following calculations.

• Constructibility:

N(r) ≤

(

k + r

2

)

− k′ 9
8 −

(

k

2

)

≤

(

r

2

)

+ k′(k − k′ 1
8 ) ≤

(

r

2

)

• Exchangeability: Since G has at most 3k
2 vertices, we can set ∆ = 3k

2 − 1 (observe that
2∆ ∈ N) and we obtain the following:

N(r) ≥ (1 + D)(k + r)
3

2 −

(

k

2

)

≥ r
(

(1 + D)(k + r)
1

2 − 1
)

≥ r(k
1

ε − 1) ≥
3k

2
r

Case IV. Let
(

k′

2

)

− k′
9

8 ≤ f(k′) <
(

k′

2

)

− k′

3 . Apply Rs, St, and T α
r,N(r) with parameters:

s =

⌈

1

3
k′ 1

4

⌉

− k, t = 1, α = 1, r = k′ − k − s −

(

k + s

2

)

.

Clearly, s ≥ 0 and we have k + s + t
(

k+s
2

)

+ r =
(

k+s+1
2

)

+ r = k′. Moreover, it is easily seen

that r ≥ k′ 3
4 for k′ large enough, since r = k′ −

(

k+s+1
2

)

≥ k′ − 1
2(k + s + 1)2 ≥ k′ − 2

3k′ 1
2 ≥ k′ 3

4 .
Furthermore, for k large enough (and thus k ′, r as well), constructibility and exchangeability
can be satisfied as can be seen by the following calculations.
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• Constructibility:

N(r) ≤

(

k′

2

)

−
k′

3
−

(

k + s + 1

2

)

r − 2

(

k + s

2

)

≤

(

r

2

)

+
1

4
(k + s + 1)4 −

k′

3
≤

(

r

2

)

+
1

4

(

2

3
k′ 1

4

)4

−
k′

3

≤

(

r

2

)

−

(

1

3
−

4

81

)

k′ ≤

(

r

2

)

• Exchangeability: Since t = 1, we can iteratively remove vertices in such an order that every
removed vertex has maximum degree two when being removed. Thus, a vertex removed
from H was incident with at most r− z +2 edges. Assume that every vertex in A(r,N(r))
has degree at least (r − 1) −

((

k+s+1
2

)

− 2
)

within A(r,N(r)). Then a new vertex chosen

from A(r,N(r)) is incident with at least (r−z)−
((

k+s+1
2

)

−2
)

+
(

k+s+1
2

)

= r−z+2 edges in
H. Therefore we can exchange vertices consecutively such that all vertices from A(r,N(r))

are chosen. The minimum degree of a vertex in A(r,N(r)) is b 2N(r)
r

c. Thus, we have to

prove
⌊

2N(r)
r

⌋

≥ (r−1)−
((

k+s+1
2

)

−2
)

what is equivalent to 2N(r) ≥ 2
(

r
2

)

−
(

k+s+1
2

)

r+2r

since k, r and s are natural numbers. The inequality can be seen as follows:

2N(r) ≥ 2

((

k′

2

)

− k′ 9
8

)

− 2

(

k + s + 1

2

)

r − 4

(

k + s

2

)

= 2

(

r

2

)

+ 2

(
(

k+s+1
2

)

2

)

− 2k′ 9
8 − 4

(

k + s

2

)

Finally, we obtain the desired statement by the following calculations:

2

(
(

k+s+1
2

)

2

)

+

(

k + s + 1

2

)

r − 2r − 2k′ 9
8 − 4

(

k + s

2

)

≥
1

4
(k + s)4 + (k + s)2

(

1

2
r − 2

)

− 2r − 2k′ 9
8 ≥

1

9
k′ 1

2

(

1

2
k′ 3

4 − 2

)

− 4k′ 9
8

≥
1

18
k′ 5

4 − 5k′ 9
8 ≥ 0

Case V. Let
(

k′

2

)

− k′

3 ≤ f(k′) ≤
(

k′

2

)

. Apply Rs, St, and T α
r,N(r) with parameters:

s = 0, t = 0, α = 1, r = k′ − k.

Clearly, we have k + s + t
(

k+s
2

)

+ r = k + r = k′. For k large enough (and thus k′, r as well),
constructibility and exchangeability can be satisfied as can be seen by the following arguments.

• Constructibility:

N(r) ≤

(

k + r

2

)

− kr −

(

k

2

)

=

(

r

2

)

• Exchangeability: Let B be the densest k-vertex subgraph of H. Assume that G has no
clique of size k (which in fact, is the only interesting case to consider). Hence, B is not a
clique. Since B is the densest subgraph, each vertex of H which does not belong to B is

13



adjacent to at most k − 1 vertices of B. Thus, on the one hand, removing all vertices in
H \ B yields a loss of at most z(r − z) +

(

z
2

)

+ z(k − 1) edges. On the other hand, since

A(r,N(r)) misses at most k′

3 ≤ r
2 edges to be complete, each vertex of the quasi-regular

graph A(r,N(r)) is adjacent to at least r − 2 vertices, thus not connected to at most one
vertex other than itself. Consequently, choosing all z not-yet-chosen vertices of A(r,N(r))
adds at least (r − z)z +

(

z
2

)

− z + zk = z(r − z) +
(

z
2

)

+ z(k − 1) edges. Thus, an exchange
of vertices is possible without loosing edges in number.

❑

Now we are able to formulate the result of Theorem 9 in terms of γ-Cluster.

Corollary 10. Let γ = 2+Ω( 1
k1−ε ) for some ε > 0 be polynomial-time computable, γ(k) ≤ k−1.

Then γ-Cluster is NP-complete.

5 Conclusion

In this paper we have proved that density-based clustering in graphs is inherently hard. The
main result states that finding a k-vertex subgraph with average degree at least γ(k) is NP-
complete if γ = 2 + Ω( 1

k1−ε ) and solvable in polynomial time if γ = 2 + O( 1
k
). In particular,

for constant average-degree that means that detecting whether there is a k-vertex subgraph
with average degree at least two is easy but with average degree at least 2 + ε it is intractable.
Since the NP-threshold is so tremendously low, it seems inevitable to explore how the problem
behaves in relevant graph-classes, e.g., in sparse graphs or graphs with small diameter. Sparsity,
however, is not expected to lift the NP-threshold.

Though detecting a subgraph of a certain size and a certain density is an important algorith-
mic issue, the original problem intended to be solved is Maximum γ-Cluster: compute the
largest subgraph with average degree over some γ-value. Of course, this problem is intimately
related to γ-Cluster, and in fact, we have the same tractable-intractable threshold as for the
decision problem. The main open question is: how good is Maximum γ-Cluster approximable
depending on γ? For instance, for γ(k) = k − 1 (i.e., Maximum Clique), it is known to be

approximable within O
(

n
(log n)2

)

[5] but not approximable within n
1

2
−ε unless P = NP [14]. How

do these results translate to intermediate densities?
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