Bin Packing

Given n items with sizes sy,..., s, where
1>s1>--->25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

Theorem 5
There is no p-approximation for Bin Packing with p < 3/2 unless

P = NP.

m EADS II 17.3 Bin Packing
©Harald Racke 359

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = >; b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

» A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

» Hence, such an algorithm can solve Partition.

m EADS II 17.3 Bin Packing
©Harald Racke

360

Bin Packing

Definition 6

An asymptotic polynomial-time approximation scheme (APTAS)
is a family of algorithms {A¢} along with a constant ¢ such that
A¢ returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

> Note that for Set Cover or for Knapsack it makes no sense
to differentiate between the notion of a PTAS or an APTAS
because of scaling.

» However, we will develop an APTAS for Bin Packing.

m EADS II 17.3 Bin Packing
©Harald Racke

361

Bin Packing

Again we can differentiate between small and large items.

Lemma 7

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{¥, ﬁSIZE(I) + 1} bins,
where SIZE(I) = >.; s; is the sum of all item sizes.

» If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

» Hence, (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

» This gives the lemma.

m EADS II 17.3 Bin Packing
©Harald Racke

362

Choose y = €/2. Then we either use ¥ bins or at most

1
1-¢€/2

-OPT+1<(1+¢€)-0PT+1

bins.

It remains to find an algorithm for the large items.

m EADS II 17.3 Bin Packing
©Harald Racke

363

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
» Order large items according to size.

> Let the first k items belong to group 1; the following k
items belong to group 2; etc.

» Delete items in the first group;

» Round items in the remaining groups to the size of the
largest item in the group.

m EADS II 17.3 Bin Packing
©Harald Racke

364

Linear Grouping

m EADS II 17.3 Bin Packing
©Harald Racke

365

Lemma 8
OPT(I') < OPT(I) <OPT{') + k

Proof 1:

» Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

» Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

m EADS II 17.3 Bin Packing
©Harald Racke

366

Lemma 9
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:

» Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

» Pack the items of groups 2, where in the packing for I’ the
items for group 2 have been packed;

m EADS II 17.3 Bin Packing
©Harald Racke

367

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en /2.

We set k = | eSIZE(I) |.

Then n/k <n/le’n/2] < 4/€? (here we used |] > /2 for
x> 1).

Hence, after grouping we have a constant number of piece sizes
(4/€%) and at most a constant number (2/¢€) can fit into any bin.

We can find an optimal packing for such instances by the
previous Dynamic Programming approach.

» cost (for large items) at most

OPT(I') + k < OPT(I) + €SIZE(I) < (1 + €)OPT(I)

> running time O((%n)“/ez).

