19 MAXSAT

Problem definition:
» 1 Boolean variables

» m clauses Cq,...,Cy,. For example

C7 =X3V X5V Xg

» Non-negative weight w; for each clause C;.

» Find an assignment of true/false to the variables sucht that
the total weight of clauses that are satisfied is maximum.
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19 MAXSAT

Terminology:

>

>

A variable x; and its negation X; are called literals.

Hence, each clause consists of a set of literals (i.e., no
duplications: x; Vv x; vV X; is not a clause).

We assume a clause does not contain x; and X; for any i.

x; is called a positive literal while the negation x; is called a
negative literal.

For a given clause C; the number of its literals is called its
length or size and denoted with ;.

Clauses of length one are called unit clauses.
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MAXSAT: Flipping Coins

Set each x; independently to true with probability % (and, hence,
to false with probability %, as well).
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Define random variable X; with

X = 1 if C; satisfied
Tl 0 otw.

Then the total weight W of satisfied clauses is given by

W =2 w;X;
j
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E[W]=> wjE[X/]
J
= ijPr[Cj is satisified]

= %wj(l - (%)%
= ;%wj

OPT

=

N | =
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MAXSAT: LP formulation

> Let for a clause Cj, P; be the set of positive literals and N;

the set of negative literals.

Cj= \/Xl‘\/ \/)_Ci

jGPJ’ jGNJ'
max 2jw;zj
st Vi 2iep; Yi+ 2ien,(1->i) = zj
Vi yi € {0,1}
Vj zZj = 1
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MAXSAT: Randomized Rounding

Set each x; independently to true with probability y; (and,
hence, to false with probability (1 — y;)).
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Lemma 7 (Geometric Mean < Arithmetic Mean)
For any nonnegative a1, ...,ay

k 1/k

i=1 i=1
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Definition 8
A function f on an interval I is concave if for any two points s
and v from I and any A € [0,1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 9
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S(A) =f((1-A)0+ A1)
> (1-A)f(0)+Af(1)
=a+Ab

for A € [0,1].

m EADS II 19 MAXSAT
©Harald Racke 414



Pr[C; not satisfied]
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The function f(z) =1 — (1 — %)f is concave. Hence,

\

2\ i
Pr[C; satisfied] > 1 - ( _ J)
Y

I\
1
[y
|
/
—
|
:Q‘ =
N——
S
N
L

1 (-1 z t-2 .
f(z) = 77[1 - ?] < 0 for z € [0, 1]. Therefore, f is
concave.
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E[W] = > w;Pr[C; is satisfied]

J
1\
Zsz'Zj |:1— (1—#) ]
Jj J
1
> (1_E>OPT'
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MAXSAT: The better of two

Theorem 10
Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a %-approximation.
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Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

Tt
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MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

We could define a function f:[0,1] — [0, 1] and set x; to true
with probability f(vy;).
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MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-47% < f(x) <4%!

Theorem 11
Rounding the LP-solution with a function f of the above form
gives a %-approximation.
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[C; not satisfied] = [[ (1= f(»:) [] fO)
LEP; LEN;
< 1_[ 47Yi n 4Yi—1
iGPj iGN]'

_ 4*(Ziepjyi+2iezvj(1*yi))

<47
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The function g(z) =1 — 477 is concave on [0, 1]. Hence,
Pr[C; satisfied] =1 -47%/ > %ZJ’ .
Therefore,

= > w;Pr[C;j satisfied] ijzj > iOPT
J
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Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 12 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

Note that an integrality gap only holds for one specific ILP
formulation.



Lemma 13
Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3.
max 2 jw;zj
st Vj Diep; Vit 2ien;(1=2i) = zj
Vi yi € {0,1}
Vj Zj < 1

Consider: (x1 VvV x2) A (X1 VX2) A (X1 V X2) A(X1V X2)
» any solution can satisfy at most 3 clauses

» we can set y; = y» = 1/2 in the LP; this allows to set
Z1=22=23=24=1

» hence, the LP has value 4.
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