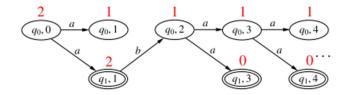
Solving the first problem

- We use owing states and breakpoints again:
 - A breakpoint of a ranking is now a level of the ranking such that no state of the level owes a visit to a node of odd rank.
 - We have again: a ranking is odd iff it has infinitely many breakpoints.
 - We enrich the state with a set of owing states, and choose the accepting states as those in which the set is empty.

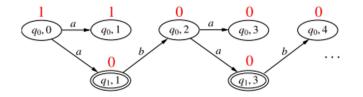
Owing states



$\begin{bmatrix} 2\\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1\\ 2 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1\\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1\\ 0 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1\\ 0 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1\\ 0 \end{bmatrix} \dots$ ${}_{\{q_0\}} \qquad {}_{\{q_1\}} \qquad \emptyset \qquad {}_{\{q_1\}} \qquad \emptyset$

2 Implementing Boolean Operations for Büchi Automata

Owing rankings



$\begin{bmatrix} 1 \\ \bot \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ \bot \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ \bot \end{bmatrix} \dots$ $\emptyset \quad \{q_1\} \quad \{q_0\} \quad \{q_0, q_1\} \quad \{q_0\}$

2 Implementing Boolean Operations for Büchi Automata

Second draft for \overline{A}

- For a two-state *A* (the case of more states is analogous):
 - States: all pairs $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, *O* wher accepting states get even rank, and *O* is set of owing states (of even rank)
 - Initial states: all $\begin{bmatrix} n_1 \\ \bot \end{bmatrix}$, $\{q_0\}$ where n_1 even if q_0 accepting.
 - Transitions: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, $O \xrightarrow{a} \begin{bmatrix} n'_1 \\ n'_2 \end{bmatrix}$, O' s.t. ranks don't increase and owing states are correctly updated

– Final states: all states
$$\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$$
, Ø

- The runs of \overline{A} on a word w correspond to all the rankings of dag(w).
- The accepting runs of *Ā* on a word *w* correspond to all the odd rankings of *dag(w)*.
- Therefore: $L(\overline{A}) = \overline{L(A)}$

Solving the second problem

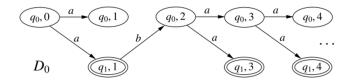
Proposition: If *w* is rejected by *A*, then dag(w) has an odd ranking in which ranks are taken from the range [0,2n], where *n* is the number of states of *A*. Further, the initial node gets rank 2n.

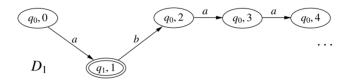
Proof: We construct such a ranking as follows:

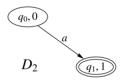
- we proceed in n + 1 rounds (from round 0 to round n), each round with two steps k. 0 and k. 1 with the exception of round n which only has n. 0
- each step removes a set of nodes together with all its descendants.
- the nodes removed at step i.j get rank 2i + j
- the rank of the initial node is increased to 2*n* if necessary (preserves the properties of rankings).

The steps

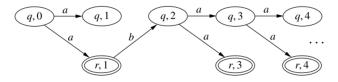
- Step *i*. 0 : remove all nodes having only finitely many successors.
- Step *i*. 1 : remove nodes that are non-accepting and have no accepting descendants
- This immediately guarantees :
 - 1. Ranks along a path cannot increase.
 - 2. Accepting states get even ranks, because they can only be removed at step *i*. 0
- It remains to prove: no nodes left after n + 1 rounds.







- To prove: no nodes left after n rounds .
- Each level of a dag has a width



- We define the width of a dag as the largest level width that appears infinitely often.
- Each round decreases the width of the dag by at least 1.
- Since the intial width is at most *n* after at most *n* rounds the width is 0, and then step *n*. 0 removes all nodes.

Final \overline{A}

- For a two-state *A* (the case of more states is analogous):
 - States: all pairs $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, *O* where *O* set of owing states and accepting states get even rank
 - Initial state: all $\begin{bmatrix} 2n \\ \bot \end{bmatrix}$, $\{q_0\}$
 - Transitions: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, $O \xrightarrow{a} \begin{bmatrix} n'_1 \\ n'_2 \end{bmatrix}$, O' s.t. ranks don't increase and owing states are correctly updated

– Final states: all states $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$, Ø

An example

- We construct the complements of $A_1 = (\{q\}, \{a\}, \delta, \{q\}, \{q\}) \text{ with } \delta(q, a) = \{q\}$ $A_2 = (\{q\}, \{a\}, \delta, \{q\}, \emptyset) \text{ with } \delta(q, a) = \{q\}$
- States of A_1 : $\langle 0, \emptyset \rangle, \langle 2, \emptyset \rangle, \langle 0, \{q\} \rangle, \langle 2, \{q\} \rangle$
- States of A₂:
 - $\langle 0, \emptyset \rangle, \langle 1, \emptyset \rangle, \langle 2, \emptyset \rangle, \langle 0, \{q\} \rangle, \langle 2, \{q\} \rangle$
- Initial state of A_1 and A_2 : $\langle 2, \{q\} \rangle$

An example

• Transitions of A₁:

 $\langle 2, \{q\} \rangle \xrightarrow{a} \langle 2, \{q\} \rangle, \langle 2, \{q\} \rangle \xrightarrow{a} \langle 0, \emptyset \rangle, \langle 0, \{q\} \rangle \xrightarrow{a} \langle 0, \{q\} \rangle$

• Transitions of A₂:

 $\begin{array}{c} \langle 2, \{q\} \rangle \xrightarrow{a} \langle 2, \{q\} \rangle, \langle 2, \{q\} \rangle \xrightarrow{a} \langle 1, \emptyset \rangle, \langle 2, \{q\} \rangle \xrightarrow{a} \langle 0, \emptyset \rangle, \\ \langle 1, \emptyset \rangle \xrightarrow{a} \langle 1, \emptyset \rangle, \langle 1, \emptyset \rangle \xrightarrow{a} \langle 0, \{q\} \rangle, \\ \langle 0, \{q\} \rangle \xrightarrow{a} \langle 0, \{q\} \rangle \end{array}$

- Final states of A_1 : $(0, \emptyset)$, $(2, \emptyset)$ (unreachable)
- Final states of A₂: (0, ∅), (1, ∅), (2, ∅) (only (1, ∅) is reachable)

CompNBA(A)**Input:** NBA $A = (Q, \Sigma, \delta, q_0, F)$ **Output:** NBA $\overline{A} = (\overline{Q}, \Sigma, \overline{\delta}, \overline{q}_0, \overline{F})$ with $L_{\omega}(\overline{A}) = \overline{L_{\omega}(A)}$ 1 $\overline{O}, \overline{\delta}, \overline{F} \leftarrow \emptyset$ 2 $\overline{q}_0 \leftarrow [lr_0, \{q_0\}]$ 3 $W \leftarrow \{ [lr_0, \{q_0\}] \}$ 4 while $W \neq \emptyset$ do pick [lr, P] from W; add [lr, P] to \overline{Q} 5 if $P = \emptyset$ then add [lr, P] to \overline{F} 6 for all $a \in \Sigma$, $lr' \in \mathbb{R}$ such that $lr \stackrel{a}{\mapsto} lr'$ do 7 8 if $P \neq \emptyset$ then $P' \leftarrow \{q \in \delta(P, a) \mid lr'(q) \text{ is even }\}$ 9 else $P' \leftarrow \{q \in Q \mid lr'(q) \text{ is even }\}$ add ([lr, P], a, [lr', P']) to $\overline{\delta}$ 10 if $[lr', P'] \notin \overline{Q}$ then add [lr', P'] to W 11 return $(\overline{Q}, \Sigma, \overline{\delta}, \overline{q}_0, \overline{F})$ 12

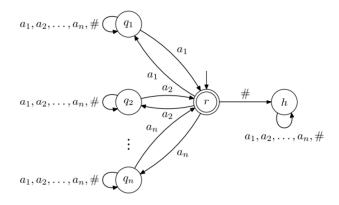
Complexity

- A state consists of a level of a ranking and a set of owing states.
- A level assigns to each state a number f [0,2n] or the symbol ⊥.
- So the complement NBA has at most $(2n + 2)^n \cdot 2^n \in n^{O(n)} = 2^{O(n \log n)}$ states.
- Compare with 2^n for the NFA case.
- We show that the log *n* factor is unavoidable.

We define a family $\{L_n\}_{n\geq 1}$ of ω -languages s.t.

- $-L_n$ is accepted by a NBA with n + 2 states.
- Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.
- The alphabet of L_n is $\Sigma_n = \{1, 2, \dots, n, \#\}$.
- Assign to a word $w \in \Sigma_n$ a graph G(w) as follows:
 - Vertices: the numbers 1, 2, ..., n.
 - Edges: there is an edge $i \rightarrow j$ iff w contains infinitely many occurrences of ij.
- Define: $w \in L_n$ iff G(w) has a cycle.

• L_n is accepted by a NBA with n + 2 states.



Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.

- Let τ denote a permutation of 1, 2, ..., n.
- We have:
 - a) For every τ , the word $(\tau \#)^{\omega}$ belongs to $\overline{L_n}$ (i.e., its graph contains no cycle).
 - b) For every two distinct τ₁, τ₂, every word containing inf. many occurrences of τ₁ and inf. many occurrences of τ₂ belongs to L_n.

Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.

- Assume A recognizes L_n and let τ₁, τ₂ distinct. By (a), A has runs ρ₁, ρ₂ accepting (τ₁ #)^ω, (τ₂ #)^ω. The sets of accepting states visited i.o. by ρ₁, ρ₂ are disjoint.
 - Otherwise we can ``interleave'' ρ_1 , ρ_2 to yield an acepting run for a word with inf. Many occurrences of τ_1 , τ_2 , contradicting (b).
- So *A* has at least one accepting state for each permutation, and so at least *n*! States.

