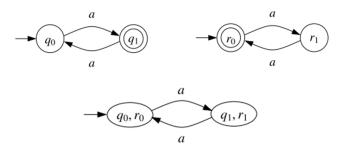
2. Implementing Boolean Operations for Büchi Automata

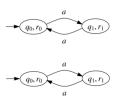
Intersection of NBAs

• The algorithm for NFAs does not work ...



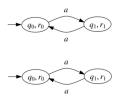
Apply the same idea as in the conversion $NGA \Rightarrow NBA$

1. Take two copies of the pairing $[A_1, A_2]$.



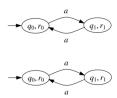
Apply the same idea as in the conversion $NGA \Rightarrow NBA$

- Take two copies of the pairing $[A_1, A_2]$.
- Redirect transitions of the first copy leaving F_1 to the second copy.



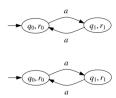
Apply the same idea as in the conversion NGA \Rightarrow NBA

- 1. Take two copies of the pairing $[A_1, A_2]$.
- 2. Redirect transitions of the first copy leaving F_1 to the second copy.
- 3. Redirect transitions of the second copy leaving F_2 to the second copy.



Apply the same idea as in the conversion NGA \Rightarrow NBA

- 1. Take two copies of the pairing $[A_1, A_2]$.
- 2. Redirect transitions of the first copy leaving F_1 to the second copy.
- 3. Redirect transitions of the second copy leaving F_2 to the second copy.
- 4. Set F to the set F_1 in the first copy.




```
IntersNBA(A_1, A_2)
Input: NBAs A_1 = (O_1, \Sigma, \delta_1, g_{01}, F_1), A_2 = (O_2, \Sigma, \delta_2, g_{02}, F_2)
```

```
Output: NBA A_1 \cap_{\omega} A_2 = (Q, \Sigma, \delta, q_0, F) with L_{\omega}(A_1 \cap_{\omega} A_2) = L_{\omega}(A_1) \cap L_{\omega}(A_2)
```

```
for all a \in \Sigma do
1 O, \delta, F \leftarrow \emptyset
2 \quad q_0 \leftarrow [q_{01}, q_{02}, 1]
                                                                      for all q_1' \in \delta_1(q_1, a), q_2' \in \delta(q_2, a) do
W \leftarrow \{[q_{01}, q_{02}, 1]\}
                                                                           if i = 1 and a_1 \notin F_1 then
                                                        10
4 while W \neq \emptyset do
     pick [q_1, q_2, i] from W
                                                        11
                                                                              add ([q_1, q_2, 1], a, [q'_1, q'_2, 1]) to \delta
     add [q_1, q_2, i] to Q'
                                                                              if [q'_1, q'_2, 1] \notin Q' then add [q'_1, q'_2, 1] to W
     if q_1 \in F_1 and i = 1 then add [q_1, q_2, 1] to F' 12
                                                                           if i = 1 and a_1 \in F_1 then
                                                        13
                                                                              add ([q_1, q_2, 1], a, [q'_1, q'_2, 2]) to \delta
                                                        14
                                                                              if [q'_1, q'_2, 2] \notin Q' then add [q'_1, q'_2, 2] to W
                                                        15
                                                                           if i = 2 and q_2 \notin F_2 then
                                                        16
                                                        17
                                                                              add ([q_1, q_2, 2], a, [q'_1, q'_2, 2]) to \delta
                                                                              if [q'_1, q'_2, 2] \notin Q' then add [q'_1, q'_2, 2] to W
                                                        18
                                                                           if i = 2 and a_2 \in F_2 then
                                                        19
                                                        20
                                                                              add ([q_1, q_2, 2], a, [q'_1, q'_2, 1]) to \delta
                                                                              if [q'_1, q'_2, 1] \notin Q' then add [q'_1, q'_2, 1] to W
                                                        21
                                                               return (O, \Sigma, \delta, q_0, F)
```

Special cases/improvements

- If all states of at least one of A_1 and A_2 are accepting, the algorithm for NFAs works.
- Intersection of NBAs A_1, A_2, \dots, A_k
 - Do NOT apply the algorithm for two NBAs (k-1) times.
 - Proceed instead as in the translation $NGA \Rightarrow NBA$: take k copies of $[A_1, A_2, ..., A_k]$ $(kn_1 \dots n_k)$ states instead of $2^k n_1 \dots n_k$

Complement

- Main result proved by Büchi: NBAs are closed under complement.
- Many later improvements in recent years.
- Construction radically different from the one for NFAs.

Problems

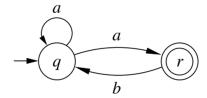
• The powerset construction does not work.

 Exchanging final and non-final states in DBAs also fails.

- Extend the idea used to determinize co-Büchi automata with a new component.
- Recall: a NBA accepts a word w iff some path of dag(w) visits final states infinitely often.
- Goal: given NBA A, construct NBA \bar{A} such that:

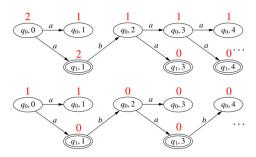
```
A rejects w iff no path of dag(w) visits accepting states of A i.o. iff some run of \bar{A} visits accepting states of \bar{A} i.o. iff \bar{A} accepts w
```


Running example



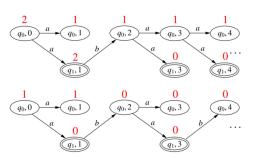
Rankings

- Mappings that associate to every node of dag(w) a rank (a natural number) such that
 - ranks never increase along a path, and
 - ranks of accepting nodes are even.



Odd rankings

 A ranking is odd if every infinite path of dag(w) visits nodes of odd rank i.o.



Prop.: no path of dag(w) visits accepting states of A i.o. iff dag(w) has an odd ranking

Proof: Ranks along infinite paths eventually reach a stable rank.

(←): The stable rank of every path is odd. Since accepting nodes have even rank, no path visits accepting nodes i.o.
(→): We construct a ranking satisfying the conditions.

Give each accepting node $\langle q, l \rangle$ rank 2k, where k is the maximal number of accepting nodes in a path starting at $\langle q, l \rangle$.

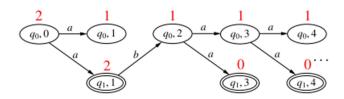
Give a non-accepting node (q, l) rank 2k + 1, where 2k is the maximal even rank among its descendants.

Goal:

A rejects w iff ag(w) has an odd ranking iff some run of \bar{A} visits accepting states of \bar{A} i.o. iff \bar{A} accepts w

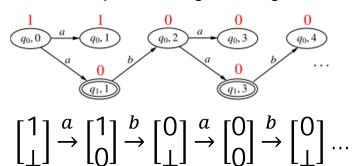
- Idea: design \overline{A} so that
 - its runs on w are the rankings of dag(w), and
 - its acceptings runs on w are the odd rankings of dag(w).

Representing rankings

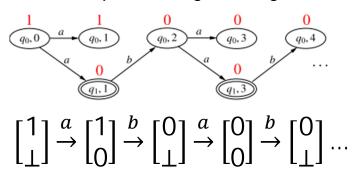


$$\begin{bmatrix} 2 \\ \bot \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \stackrel{b}{\rightarrow} \begin{bmatrix} 1 \\ \bot \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \stackrel{a}{\rightarrow} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \dots$$

Representing rankings



Representing rankings



• We can determine if $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \stackrel{l}{\rightarrow} \begin{bmatrix} n'_1 \\ n'_2 \end{bmatrix}$ may appear in a ranking by just looking at n_1, n_2, n'_1, n'_2 and l: ranks should not increase.

First draft for A

- For a two-state A (more states analogous):
 - States: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$ where accepting states get even rank
 - Initial states: all states of the form $\begin{bmatrix} n_1 \\ 1 \end{bmatrix}$
 - Transitions: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \stackrel{a}{\to} \begin{bmatrix} n'_1 \\ n'_2 \end{bmatrix}$ s.t. ranks don't increase
- The runs of the automaton on a word w correspond to all the rankings of dag(w).
- Observe: \bar{A} is a NBA even if A is a DBA, because there are many rankings for the same word.

Problems to solve

- How to choose the accepting states?
 - They should be chosen so that a run is accepted iff its corresponding ranking is odd.
- Potentially infinitely many states (because rankings can contain arbitrarily large numbers)

