Muller automata

- A nondeterministic Muller automaton (NMA) has a collection {F₀, F₁, ..., F_{m-1}} of sets of accepting states.
- A run is accepting if the set of states it visits infinitely often is equal to one of the sets in the collection.

From Büchi to Muller automata

- Let *A* be a NBA with set *F* of accepting states.
- A set of states of A is good if it contains some state of *F*.
- Let *G* be the set of all good sets of *A*.
- Let *A*' be "the same automaton" as *A*, but with Muller condition *G*.
- Let ρ be an arbitrary run of A and A'. We have
 - ρ is accepting in A
 - iff $inf(\rho)$ contains some state of F
 - iff $\inf(\rho)$ is a good set of A
 - iff ρ is accepting in A'

From Muller to Büchi automata

- Let A be a NMA with condition $\{F_0, F_1, \dots, F_{m-1}\}$.
- Let A_0, \dots, A_{m-1} be NMAs with the same structure as A but Muller conditions $\{F_0\}, \{F_1\}, \dots, \{F_{m-1}\}$ respectively.
- We have: $L(A) = L(A_0) \cup ... \cup L(A_{m-1})$
- We proceed in two steps:
 - 1. we construct for each NMA A_i an NGA A_i' such that $L(A_i) = L(A_i')$
 - 2. we construct an NGA A' such that $L(A') = L(A'_0) \cup ... \cup L(A'_{m-1})$


```
NMA1toNGA(A)
Input: NMA A = (Q, \Sigma, q_0, \delta, \{F\})
Output: NGA A = (Q', \Sigma, q'_0, \delta', \mathfrak{F}')
 1 O', \delta', \mathfrak{F}' \leftarrow \emptyset
 2 q'_0 \leftarrow [q_0, 0]
 3 W \leftarrow \{[a_0, 0]\}
 4 while W \neq 0 do
         pick [q, i] from W; add [q, i] to Q'
 5
         if q \in F and i = 1 then add \{[q, 1]\} to \mathcal{F}'
 6
         for all a \in \Sigma, q' \in \delta(q, a) do
 7
 8
             if i = 0 then
                add ([q, 0], a, [q', 0]) to \delta'
 9
                if [q', 0] \notin Q' then add [q', 0] to W
10
                if q' \in F then
11
                   add ([q, 0], a, [q', 1]) to \delta'
12
13
                   if [q', 1] \notin Q' then add [q', 1] to W
          else /* i = 1 */
14
15
                if q' \in F then
                   add ([q, 1], a, [q', 1]) to \delta'
16
17
                   if [q', 1] \notin Q' then add [q', 1] to W
18 return (Q', \Sigma, q'_0, \delta', \mathfrak{F}')
```


Equivalence of NMAs and DMAs

- Theorem (Safra): Any NBA with *n* states can be effectively transformed into a DMA of size n⁰(n).
 Proof: Omitted.
- DMA for $(a + b)^* b^{\omega}$:

with accepting condition $\{ \{q_1\} \}$

- Question: Are there other classes of omegaautomata with
 - the same expressive power as NBAs or NGAs, and
 - with equivalent deterministic and nondeterministic versions?
- Answer: Yes, Muller automata

Is the quest over?

- Recall the translation NBA \Rightarrow NMA
- The NMA has the same structure as the NBA; its accepting condition are all the good sets of states.
- The translation has exponential complexity.

New question: Is there a class of ω -automata with

- the same expressive power as NBAs,
- equivalent deterministic and nondeterministic versions, and
- polynomial conversions to and from Büchi automata?

Rabin automata

- The acceptance condition is a set of pairs $\{ \langle F_0, G_0 \rangle, \dots, \langle F_{m-1}, G_{m-1} \rangle \}$
- A run ρ is accepting if there is a pair
 (F_i, G_i) such that ρ visits the set F_i infinitely often and the set G_i finitely often.
- Translations NBA ⇒ NRA and NRA ⇒ NBA are left as an exercise.
- Theorem (Safra): Any NBA with n states can be effectively transformed into a DRA with n⁰⁽ⁿ⁾ states and 0(n) accepting pairs.

