Symbolic exploration

- A technique to palliate the state-explosion problem
- Configurations can be encoded as words.
- The set of reachable configurations of a program can be encoded as a language.
- We use automata to compactly store the set of reachable configurations.

Flowgraphs

while $x = 1$ do $\mathbf{1}$ if $y = 1$ then $\sqrt{2}$ $\overline{3}$ $x \leftarrow 0$

$$
4 \qquad y \leftarrow 1 - x
$$

5 end

8 Verification

Step relations

- Let l, l' be two control points of a flowgraph.
- \bullet The step relation $S_{l,l'}$ contains all pairs

$([l, x_0, y_0], [l', x'_0, y'_0])$

of configurations such that :

if at point l the current values of x , y are x_0 , y_0 , then the program can take a step, after which the new control point is l' , and the new values of x, y are x'_0, y'_0 .

$$
S_{4,1} = \left\{ \left(\begin{bmatrix} 4 & x_0 & y_0 \end{bmatrix}, \begin{bmatrix} 1 & x_0 & 1 - x_0 \end{bmatrix} \right) \middle| x_0, y_0 \in \{0, 1\} \right\}
$$

• The global step relation S is the union of the step relations $S_{l,l'}$ for all pairs l, l' of control points.

Computing reachable configurations

- Start with the set of initial configurations.
- Iteratively: add the set of successors of the current set of configurations until a fixed point is reached.

 $P_1 = P_0 \cup Post(P_0, S)$

 $P_0 = I$

 $P_1 = P_0 \cup Post(P_0, S)$

 $P_0 = I$

 $P_1 = P_0 \cup Post(P_0, S)$

 $P_0 = I$

$Reach(I, R)$ **Input:** set I of initial configurations; relation R **Output:** set of configurations reachable form I

- $OldP \leftarrow \emptyset: P \leftarrow I$ $\mathbf{1}$
- while $P \neq OldP$ do \mathfrak{D}
- $OldP \leftarrow P$ 3
- $\overline{4}$ $P \leftarrow \text{Union}(P, \text{Post}(P, S))$
- 5 return P

8 Verification

8 Verification

Example: Transducer for the global step relation

Example: DFAs generated by Reach

• Initial configurations

• Configurations reachable in at most 1 step

Example: DFAs generated by Reach

• Configurations reachable in at most 2 steps

Example: DFAs generated by Reach

• Configurations reachable in at most 3 steps

Variable orders

• Consider the set Y of tuples $[x_1, \ldots, x_{2k}]$ of booleans such that

 $x_1 = x_{k+1}, x_2 = x_{k+2}, \dots, x_k = x_{2k}$

- A tuple $[x_1, ..., x_{2k}]$ can be encoded by the word $x_1x_2\ldots x_{2k-1}x_{2k}$ but also by the word $x_1x_{k+1}\ldots x_kx_{2k}$.
- For $k=3$, the encodings of Y are then, respectively {000000, 001001, 010010, 011011, 100100, 101101, 110110, 111111} {000000, 000011, 001100, 001111, 110000, 110011, 111100, 111111}
- The minimal DFAs for these languages have very different sizes!

Another example: Lamport's algorithm

 \textsf{AFS} 274/431

• DFAs after adding the configuration $\langle c_0, c_1, 1, 1 \rangle$ to the set

- When encoding configurations, good variable orders can lead to much smaller automata.
- Unfortunately, the problem of finding an optimal encoding for a language represented by a DFA is NP-complete.

