Lazy DFAs

- We introduce a new data structure: lazy DFAs. We construct a lazy DFA for $\Sigma^* p$ with m states and 2m transitions
- Lazy DFAs: automata that read the input from a tape by means of a reading head that can move one cell to the right or stay put
- DFA=Lazy DFA whose head never stays put

Lazy DFA for $\Sigma^* p$

- By the fundamental property, the DFA B_p for $\Sigma^* p$ behaves from state S_k as follows:
 - If a is a hit, then $\delta_B(S_k, a) = S_{k+1}$, i.e., the DFA moves to the next state in the spine.
 - If a is a miss, then $\delta_B(S_k, a) = \delta_B(t(S_k), a)$, i.e., the DFA moves to the same state it would move to if it were in state $t(S_k)$.
- When a is a miss for S_k , the lazy automaton moves to state $t(S_k)$ without advancing the head. In other words, it "delegates" doing the move to $t(S_k)$
- So the lazyDFA behaves the same for all misses.

- Formally,
 - $-\delta_C(S_k, a) = (S_{k+1}, R) \text{ if } a \text{ is a hit}$ $-\delta_C(S_k, a) = (t(S_k), N) \text{ if } a \text{ is a miss}$
- So the lazy DFA has m + 1 states and 2m transitions, and can be constructed in O(m) space.

- Running the lazy DFA on the text takes O(n + m) time:
 - For every text letter we have a sequence of "stay put" steps followed by a "right" step. Call it a macrostep.
 - Let S_{j_i} be the state after the i-th macrostep. The number of steps of the i-th macrostep is at most $j_{i-1} j_i + 2$.

So the total number of steps is at most

$$\sum_{i=1}^{n} (j_{i-1} - j_i + 2) = j_0 - j_n + 2n \le m + 2n$$

Computing *Miss*

- For the O(m + n) bound it remains to show that the lazy DFA can be constructed in O(m) time.
- Let Miss(k) be the head of the state reached from S_k by a miss.
- It is easy to compute each of Miss(0), ..., Miss(m) in O(m) time, leading to a $O(n + m^2)$ time algorithm.
- Already good enough for almost all purposes. But, can we compute all of Miss(0), ..., Miss(m) together in time O(m)? Looks impossible!
- It isn't though ...

$$miss(S_i) = \begin{cases} S_0 & \text{if } i = 0 \text{ or } i = 1\\ \delta_B(miss(S_{i-1}), b_i) & \text{if } i > 1 \end{cases}$$

$$\delta_B(S_j, b) = \begin{cases} S_{j+1} & \text{if } b = b_{j+1} \text{ (hit)}\\ S_0 & \text{if } b \neq b_{j+1} \text{ (miss) and } j = 0\\ \delta_B(miss(S_j), b) & \text{if } b \neq b_{j+1} \text{ (miss) and } j \neq 0 \end{cases}$$

Miss(p)

Input: word pattern $p = b_1 \cdots b_m$. **Output:** heads of targets of miss transitions.

1
$$Miss(0) \leftarrow 0$$
; $Miss(1) \leftarrow 0$

- 2 for $i \leftarrow 2, \ldots, m$ do
- $Miss(i) \leftarrow DeltaB(Miss(i-1), b_i)$

DeltaB(i,b)

Input: number $i \in \{0, ..., m\}$, letter b. **Output:** head of the state $\delta_B(S_i, b)$.

- 1 while $b \neq b_{j+1}$ and $j \neq 0$ do $j \leftarrow Miss(j)$
- 2 if $b = b_{i+1}$ then return j + 1
- 3 else return 0

Miss(p)

Input: word pattern $p = b_1 \cdots b_m$.

Output: heads of targets of miss transitions.

- $Miss(0) \leftarrow 0$; $Miss(1) \leftarrow 0$
- 2 for $i \leftarrow 2, \dots, m$ do
- $Miss(i) \leftarrow DeltaB(Miss(i-1), b_i)$

DeltaB(j,b)

Input: number $j \in \{0, ..., m\}$, letter b. **Output:** head of the state $\delta_B(S_i, b)$.

- while $b \neq b_{j+1}$ and $j \neq 0$ do $j \leftarrow Miss(j)$
- if $b = b_{j+1}$ then return j + 1
- else return 0

- All calls to *DeltaB* lead together to O(m) iterations of the while loop.
- The call $DeltaB(Miss(i-1), b_i)$ executes at most Miss(i-1) - (Miss(i)-1)iterations.

• Total number of iterations:

$$\sum_{i=2}^{m} (Miss(i-1) - Miss(i) + 1)$$

$$\leq Miss(1) - Miss(m) + m$$

$$\leq m$$

7. Finite Universes

- When the universe is finite (e.g., the interval $[0, 2^{32} 1]$), all objects can be encoded by words of the same length.
- A language L has length $n \ge 0$ if
 - $L = \emptyset$ and n = 0, or
 - $L \neq \emptyset$ and every word of L has length n.
- L is a fixed-length language if it has length n for some $n \geq 0$.
- Observe:
 - Fixed-length languages contain finitely many words.
 - \emptyset and $\{\varepsilon\}$ are the only two languages of length 0.

The Master Automaton

- The master automaton over Σ is the tuple $M = (Q_M, \Sigma, \delta_M, F_M)$, where
 - $-Q_M$ is the set of all fixed-length languages;
 - $-\delta_M: Q_M \times \Sigma \to Q_M$ is given by $\delta_M(L, a) = L^a$;
 - $-F_M$ is the set $\{ \{ \epsilon \} \}$.
- Prop: The language recognized from state L of the master automaton is L.

Proof: By induction on the length n of L.

- n=0. Then either $L=\emptyset$ or $L=\{\varepsilon\}$, and result follows by inspection.
- n>0. Then $\delta_M(L,a)=L^a$ for every $a\in \Sigma$, and L^a has smaller length than L. By induction hypothesis the state L^a recognizes the language L^a , and so the state L recognizes the language L.

- We denote the "fragment" of the master automaton reachable from state L by A_L:
 - Initial state is L.
 - States and transitions are those reachable from L.
- Prop: A_L is the minimal DFA recognizing L.

 Proof: By definition, all states of A_L are reachable from its initial state. Since every state of the master automaton recognizes its "own" language, distinct states of A_L recognize distinct languages.

31

Data structure for fixed-length languages

- The structure representing the set of languages $\mathcal{L} = \{L_1, ..., L_m\}$ is the fragment of the master automaton containing states $L_1, ..., L_m$ and their descendants.
- It is a multi-DFA, i.e., a DFA with multiple initial states.

In order to manipulate multi-DFAs we represent them as a *table of nodes*. Assume $\Sigma = \{a_1, \ldots, a_m\}$. A *node* is a pair $\langle q, s \rangle$, where q is a *state identifier* and $s = (q_1, \ldots, q_m)$ is the *successor tuple* of the node. The multi-DFA is represented by a table containing a node for each state, but the state corresponding to the empty language¹.

- We represent multi-DFAs as tables of nodes .
- A node is a pair $\langle q, s \rangle$ where
 - q is a state identifier, and
 - $-s = (q_1, ..., q_m)$ is a successor tuple.
- The table for a multi-DFA contains a node for each state but the state for the empty language.

- The procedure make[T](s)
 - returns the state identifier of the node of table T having s as successor tuple, if such a node exists;
 - otherwise it adds a new node $\langle q, s \rangle$ to T, where q is a fresh identifier, and returns q.
- make[T](s) assumes that T contains a node for every identifier in s.

