Lazy DFAs

- We introduce a new data structure: lazy DFAs.
We construct a lazy DFA for $\Sigma^* p$ with m states and $2m$ transitions.
- Lazy DFAs: automata that read the input from a tape by means of a reading head that can move one cell to the right or stay put
- DFA=Lazy DFA whose head never stays put

Lazy DFA for $\Sigma^* p$

- By the fundamental property, the DFA B_p for $\Sigma^* p$ behaves from state $S_k\;$ as follows:
	- If a is a hit, then $\delta_B(S_k, a) = S_{k+1}$, i.e., the DFA moves to the next state in the spine.
	- $-$ If a is a miss, then $\delta_B(S_{k}, a) = \delta_B(t(S_k), a)$, i.e., the DFA moves to the same state it would move to if it were in state $t(S_k)$.
- When α is a miss for S_k , the lazy automaton moves to state $t(S_k)$ without advancing the head. In other words, it "delegates" doing the move to $t(S_k)$
- So the lazyDFA behaves the same for all misses.

LEA

- Formally,
	- $= (S_{k+1}, R)$ if a is a hit
	- $-\delta_C(S_k, a) = (t(S_k), N)$ if a is a miss
- $\bullet\,$ So the lazy DFA has m + 1 states and 2 m transitions, and can be constructed in $\mathit{O}\left(m\right)$ space.

- Running the lazy DFA on the text takes $O(n + m) \parallel$ time:
	- For every text letter we have a sequence of "stay put" steps followed by a "right" step. Call it a macrostep.
	- Let S_{i} be the state after the *i*-th macrostep. The number of steps of the i -th macrostep is at most $j_{i-1} - j_i + 2$.

So the total number of steps is at most $\boldsymbol{\eta}$

$$
\sum_{i=1}^{n} (j_{i-1} - j_i + 2) = j_0 - j_n + 2n \le m + 2n
$$

Computing Miss

- For the $O(m + n)$ bound it remains to show that the lazy DFA can be constructed in $O(m)$ time.
- Let $Miss(k)$ be the head of the state reached from S_k by a miss.
- $\bullet\;$ It is easy to compute each of $\,Miss(0),...$, $Miss(m)$ in $\,$ $O(m)$ time, leading to a $O(n + m^2)$ time algorithm.
- Already good enough for almost all purposes. But, can we compute <mark>all</mark> of $Miss(0),...$, $Miss(m)$ together in time $O(m)$? Looks impossible!
- It isn't though ...

$$
miss(S_i) = \begin{cases} S_0 & \text{if } i = 0 \text{ or } i = 1 \\ \delta_B(miss(S_{i-1}), b_i) & \text{if } i > 1 \end{cases}
$$

$$
\delta_B(S_j, b) = \begin{cases} S_{j+1} & \text{if } b = b_{j+1} \text{ (hit)} \\ S_0 & \text{if } b \neq b_{j+1} \text{ (miss) and } j = 0 \\ \delta_B(miss(S_j), b) & \text{if } b \neq b_{j+1} \text{ (miss) and } j \neq 0 \end{cases}
$$

 $Miss(p)$ **Input:** word pattern $p = b_1 \cdots b_m$. **Output:** heads of targets of miss transitions. $DeltaB(j, b)$ **Input:** number $j \in \{0, ..., m\}$, letter *b*. **Output:** head of the state $\delta_B(S_i, b)$.

- 1 $Miss(0) \leftarrow 0; Miss(1) \leftarrow 0$
- 2 for $i \leftarrow 2, ..., m$ do
- $Miss(i) \leftarrow DeltaB(Miss(i-1), b_i)$ $\overline{3}$

while $b \neq b_{i+1}$ and $j \neq 0$ do $j \leftarrow Miss(j)$ $\mathbf{1}$

- 2 if $b = b_{i+1}$ then return $j + 1$
- 3 else return 0

$Miss(p)$

Input: word pattern $p = b_1 \cdots b_m$. **Output:** heads of targets of miss transitions.

- $Miss(0) \leftarrow 0$: $Miss(1) \leftarrow 0$
- 2 for $i \leftarrow 2, ..., m$ do
- $Miss(i) \leftarrow DeltaB(Miss(i-1), b_i)$ 3

$DeltaB(j,b)$ **Input:** number $j \in \{0, ..., m\}$, letter *b*. **Output:** head of the state $\delta_B(S_i, b)$.

- while $b \neq b_{i+1}$ and $j \neq 0$ do $j \leftarrow Miss(j)$
- if $b = b_{j+1}$ then return $j + 1$ $\overline{2}$
- else return 0 3
- All calls to *DeltaB* lead together to $O(m)$ iterations of the while loop.
- The call

DeltaB(Miss(i – 1), b_i) executes at most $Miss(i-1) - (Miss(i) - 1)$ iterations.

• Total number of iterations:

$$
\sum_{i=2}^{m} (Miss(i-1) - Miss(i) + 1)
$$

\n
$$
\leq Miss(1) - Miss(m) + m
$$

\n
$$
\leq m
$$

$$
190/431
$$

7. Finite Universes

- When the universe is finite (e.g., the interval $[0,2^{32}-1]$), all objects can be encoded by words of the same length.
- A language L has length $n \geq 0$ if
	- $L = \emptyset$ and $n = 0$, or
	- $L \neq \emptyset$ and every word of L has length n.
- L is a fixed-length language if it has length n for some $n \geq 0$.
- **o** Observe:
	- Fixed-length languages contain finitely many words.
	- \emptyset and $\{\varepsilon\}$ are the only two languages of length 0.

The Master Automaton

7 Finite Universes

- The master automaton over Σ is the tuple $M = (Q_M, \Sigma, \delta_M, F_M)$, where
	- O_M is the set of all fixed-length languages:

$$
- \delta_M : Q_M \times \Sigma \to Q_M
$$
 is given by $\delta_M(L, a) = L^a$;

- $-F_M$ is the set { { ε } }.
- **Prop:** The language recognized from state L of the master \bullet automaton is L .

Proof: By induction on the length n of L .

 $n = 0$. Then either $L = \emptyset$ or $L = \{\varepsilon\}$, and result follows by inspection.

 $n > 0$. Then $\delta_M(L, a) = L^a$ for every $a \in \Sigma$, and L^a has smaller length than L. By induction hypothesis the state L^a recognizes the language L^a , and so the state L recognizes the language L .

- We denote the "fragment" of the master automaton reachable from state L by A_i :
	- Initial state is L . \bullet
	- States and transitions are those reachable from L. \bullet
- Prop: A_L is the minimal DFA recognizing L. Proof: By definition, all states of A_I are reachable from its initial state. Since every state of the master automaton recognizes its "own" language, distinct states of A_L recognize distinct languages.

Data structure for fixed-length languages

- The structure representing the set of languages $\mathcal{L} = \{L_1, ..., L_m\}$ is the fragment of the master automaton containing states $L_1, ..., L_m$ and their descendants.
- It is a multi-DFA, i.e., a DFA with multiple initial states.

In order to manipulate multi-DFAs we represent them as a *table of nodes*. Assume $\Sigma = \{a_1, \ldots, a_m\}$. A node is a pair $\langle q, s \rangle$, where q is a state identifier and $s = (q_1, \ldots, q_m)$ is the *successor tuple* of the node. The multi-DFA is represented by a table containing a node for each state, but the state corresponding to the empty language¹.

- We represent multi-DFAs as tables of nodes.
- A node is a pair $\langle q, s \rangle$ where
	- q is a state identifier, and
	- $-$ s = $(q_1, ..., q_m)$ is a successor tuple.
- The table for a multi-DFA contains a node for each state but the state for the empty language.

LEA

- The procedure $make[T](s)$
	- returns the state identifier of the node of table T having s as successor tuple, if such a node exists;
	- otherwise it adds a new node $\langle q, s \rangle$ to T, where q is a fresh identifier, and returns q .
- $make[T](s)$ assumes that T contains a node for every identifier in s.

