

追

Pre and Post

Goal (for post): \bullet

given

- an automaton A recognizing a set X , and - a transducer T recognizing a relation R construct an automaton B recognizing the set $\{y | \exists x \in X : (x, y) \in R\}$

We slightly modify the construction for join.

Instead of:

$$
\begin{bmatrix} q_{01} \\ q_{02} \end{bmatrix} \xrightarrow{\begin{bmatrix} a_1 \\ b_1 \end{bmatrix}} \begin{bmatrix} q_{11} \\ q_{12} \end{bmatrix} \text{ iff}
$$

$$
q_{01} \xrightarrow{\begin{bmatrix} a_1 \\ c_1 \end{bmatrix}} q_{11}
$$

$$
q_{02} \xrightarrow{\begin{bmatrix} c_1 \\ b_1 \end{bmatrix}} q_{12}
$$

for some letter c1

we now use

$$
\begin{bmatrix} q_{01} \\ q_{02} \end{bmatrix} \xrightarrow{b_1} \begin{bmatrix} q_{11} \\ q_{12} \end{bmatrix} \quad \text{if}
$$

$$
901 \xrightarrow{Q_1} 911
$$
\n
$$
902 \xrightarrow{[Q_1]} 912
$$
\n
$$
902 \xrightarrow{[Q_2]} 912
$$
\n
$$
902 \xrightarrow{[Q_3]} 912
$$

From Join to Post

 $Join(T_1, T_2)$ **Input:** transducers $T_1 = (O_1, \Sigma \times \Sigma, \delta_1, q_{01}, F_1), T_2 = (O_2, \Sigma \times \Sigma, \delta_2, q_{02}, F_2)$ **Output:** transducer $T_1 \circ T_2 = (Q, \Sigma \times \Sigma, \delta, q_0, F)$

- 1 $Q, \delta, F' \leftarrow \emptyset$; $q_0 \leftarrow [q_{01}, q_{02}]$
- 2 $W \leftarrow \{ [q_{01}, q_{02}] \}$
- 3 while $W \neq \emptyset$ do
- $\overline{4}$ **pick** $[q_1, q_2]$ from W
- 5 **add** $[q_1, q_2]$ to Q
- if $q_1 \in F_1$ and $q_2 \in F_2$ then add $[q_1, q_2]$ to F' 6
- for all $(q_1, (a, c), q'_1) \in \delta_1$, $(q_2, (c, b), q'_2) \in \delta_2$ do τ
- 8 add $([q_1, q_2], (a, b), [q'_1, q'_2])$ to δ
- 9 if $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W
- $F \leftarrow \textbf{PadClosure}((O, \Sigma \times \Sigma \delta, q_0, F'), (\#, \#))$ 10

Example: compute the set $\{f(n) | n$ multiple of 3 $\}$

AFS 5 Implementing operations on relations using finite automata 163/431 163/43

6. Some pattern matching

Given

- a word w (the text) of length n , and
- a regular expression p (the pattern) of length m ,

determine the smallest number k' such that there is a subword $w_{k,k'}$ of w with

 $w_{k,k'} \in L(p)$.

Remark: We here minimize the right end of the matching subword. To make a match unique, one could require $e.g.,$ that its length is minimal (or maximal).

NFA -based solution

PatternMatchingNFA (t, p)

Input: text $t = a_1 \dots a_n \in \Sigma^+$, pattern $p \in \Sigma^*$

Output: the first occurrence of p in t, or \perp if no such occurrence exists.

- 1 $A \leftarrow \text{RegtoNFA}(\Sigma^* p)$
- 2 $S \leftarrow \{q_0\}$
- 3 for all $k = 0$ to $n 1$ do
- if $S \cap F \neq \emptyset$ then return k $\overline{4}$

$$
5 \qquad S \leftarrow \delta(S, a_{k+1})
$$

- 6 return \perp
- Line 1 takes $O(m^3)$ time, output has $O(m)$ states
- Loop is executed at most n times
- One iteration takes $O(s^2)$ time, where s is the number of states of A
- Since $s = O(m)$, the total runtime is $O(m^3 + nm^2)$, and $O(nm^2)$ for $m \leq n$.

DFA -based solution

PatternMatchingDFA (t, p)

Input: text $t = a_1 \dots a_n \in \Sigma^+$, pattern p

Output: the first occurrence of p in t, or \perp if no such occurrence exists.

- 1 $A \leftarrow NFAtoDFA(RegtoNFA(\Sigma^*p))$
- 2 $q \leftarrow q_0$
- 3 for all $k = 0$ to $n 1$ do
- $\overline{4}$ if $q \in F$ then return k

$$
5 \qquad q \leftarrow \delta(q, a_{k+1})
$$

- return \perp 6
- Line 1 takes $2^{O(m)}$ time
- Loop is executed at most n times
- One iteration takes constant time
- Total runtime is $O(n) + 2^{O(m)}$

The word case

- $\bullet\,$ The pattern p is a word of length m
- Naive algorithm: move a window of size m along the word one letter at a time, and compare with p after each step. Runtime: $O(nm)$
- $\bullet\,$ We give an algorithm with $O(n+m)$ runtime for any alphabet of size $0 \leq |\Sigma| \leq n$.
- First we explore in detail the shape of the DFA for $\Sigma^* p$.

Intuition

- Transitions of the "spine" correspond to hits: the next letter is the one that "makes progress" towards nano
- Other transitions correspond to misses, i.e., "wrong letters" and "throw the automaton back"

- For every state $i = 0, 1, ..., 4$ of the NFA there is exactly one state S of the DFA such that i is the largest state of S.
- For every state S of the DFA, with the exception of $S = \{0\}$, the result of removing the largest state is again a state of the DFA.

- For every state $i = 0, 1, ..., 4$ of the NFA there is exactly one state S of the DFA such that i is the largest state of S.
- For every state S of the DFA, with the exception of $S = \{0\}$, the result of removing the largest state is again a state of the DFA.
- Do these properties hold for every pattern p ?

Heads and tails, hits and misses

- $\bullet\,$ Head of S , denoted $h(S)$: largest state of S
- Tail of S, denoted $t(S)$: rest of the state
- Example: $h({3,1,0}) = 3$, $t({3,1,0}) = {1,0}$
- $\bullet~$ Given a state S , the letter leading to the next state in the "spine" is the (unique) hit letter for S
- $\bullet~$ All other letters are miss letters for S
- Example: hit for {3,1,0} is *o*, whereas *n* or *a* are misses

 $\bullet\,$ Fund. Prop: Let S_k be the k -th state picked from the worklist during the execution of $\mathit{NFAtoDFA}(A_p).$ (1) $h(S_k) = k$, (2) If $k > 0$, then $t(S_k) = S_l$ for some $l < k$

Proof Idea:

- (1) and (2) hold for $S_0 = \{0\}$.
- For S_k we look at $\delta(S_k, a)$ for each a , where δ transition relation of A_p .
- By i.h. we have $S_k = \{k\} \cup S_l$ for some $l < k$
- We distinguish two cases: a is a hit for S_k , and a is a miss for S_k .

•
$$
\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)
$$

•
$$
\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)
$$

•
$$
\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)
$$

•
$$
\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)
$$

•
$$
\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)
$$

Consequences

Prop: The result of applying *NFAtoDFA*(A_p), where A_p is the obvious NFA for $\Sigma^*\!p$, yields a minimal DFA with m states and $|\Sigma| m$ transitions.

Proof: All states of the DFA accept different languages.

So: concatenating *NFAtoDFA and PatternMatchingDFA* yields a $O(n + |\Sigma| m)$ algorithm.

- Good enough for constant alphabet
- Not good enough for $|\Sigma| = O(n)$

