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Abstract We develop an external memory algorithm for computing minimum spanning
trees. The algorithm is considerably simpler than previously known external
memory algorithms for this problem and needs a factor of at least four less I/Os
for realistic inputs.

Our implementation indicates that this algorithm processes graphs only lim-
ited by the disk capacity of most current machines in time no more than a factor
2–5 of a good internal algorithm with sufficient memory space.

Keywords: secondary memory, random permutation, time forward processing, external pri-
ority queue, external graph algorithm

1 Introduction
The high capacity and low price of hard disks makes it increasingly attractive to

process huge data sets using cheap PC hardware. However, thelarge access latency
of such mechanical devices requires the design of external memory algorithms that
achieve high locality of access. A simple and successful model for external memory
assumes a limited fast memory of sizeM and a large memory that can be accessed in
consecutive blocks of sizeB in one I/O step [2].

While simple algorithmic problems like sorting have very efficient external algo-
rithms, even simple graph problems are quite difficult to solve for general graphs. For
example, depth first search has no efficient external solution. Refer to [14, Chap-
ters 3–5] for an overview. One of the most important exceptions is the minimum
spanning tree (MST) problem: Consider an undirected connected graphG with n
nodes andm edges. Edges have nonnegative weights. A minimum spanning tree
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of G is a subset of edges with minimum total weight that forms a spanning tree of
G. If the graph is not connected, most algorithms are easily adapted to find amini-
mum spanning forest(MSF), i.e., a minimum spanning tree of each connected com-
ponent. The MST problem can be solved inO(sort(m)) expected I/O steps [1] where
sort(N) = O(N/B logM/B N/B) denotes the number of I/O steps required for ex-
ternal sorting [2]. Section 3 gives more details on previouswork. We are not aware
of any implementations of external MST algorithms. One reason may be that even
the simplest previous I/O efficient MST algorithms turn out to be quite complicated
to implement. In the full paper we take a more detailed look atsome implementation
details of previous algorithms and the resulting I/O overheads.

In this paper we describe the design, analysis, implementation, and experimen-
tal evaluation of a very simple randomized algorithm for external memory minimum
spanning trees.

We begin in Section 4 with a discussion ofsemi-externalalgorithms that are appli-
cable ifn = O(M), i.e., there is enough internal memory to store a constant number
of words for each node. We choose a simple adaptation of Kruskal’s algorithm [1] that
needs only a single machine word for each node.

If n > M , all known external algorithms reduce the number of nodes bycontract-
ing MST edges: Ife = (u, v) ∈ E is known to be an MST edge, we can removeu
from the problem by outputtinge and identifyingu andv, e.g., by removing nodeu
and renaming an edge of the form(u,w) to a new edge(v, w). By remembering where
(v, w) came from, we can reconstruct the MST of the original graph from the MST
of the smaller graph. Our main algorithmic innovation is a very simple randomized
node reduction algorithm that removes one node at a time fromthe graph. Section 5
develops this idea from an abstract algorithm over an external realization using prior-
ity queues to a bucket based implementation that reduces internal overhead. Besides
being simpler and faster than previous node reduction algorithms, our algorithm needs
to store each edge only once, whereas previous algorithms store an edge{u, v} twice,
once as(u, v) and once as(v, u).

The semiexternal algorithm from Section 4 and the node reduction from Sec-
tion 5 can be combined to an external MST algorithm with expected I/O complexity
O(sort(m) dlog(n/M)e). This seems to be inferior by a factor oflog(n/M) to the
best previous algorithms. However, in Section 2 we argue that n/M ≤ 16 for any
problem that runs on a “well balanced” machine. Hence,log(n/M) will be a small
constant. A comparison with previous algorithms in the fullpaper indicates that for
all such inputs our algorithm uses at least a factor four lessI/Os than all previous algo-
rithms. Moreover, ifn/M should really get large, our node reduction algorithm could
be used to speed up asymptotically better algorithms by a similar constant factor. For
graphs that aresparse under edge contractionin the sense of [6] (e.g., planar graphs
or graphs with bounded tree width), our algorithm achieves asymptotically optimal
performance ofO(sort(m)) I/Os.

In Section 7 we report about an implementation using<stxxl>,1 an external imple-
mentation of the C++ STL library. Using a PC and 4 cheap disks,the implementation

1http://www.mpi-sb.mpg.de/~rdementi/stxxl.html
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can solve instances with up to232 nodes using about 5µs per edge. (About 2.5µs per
edge when the semi-external algorithm suffices.) The best internal algorithm for very
sparse graphs — Kruskal’s algorithm — needs about 1–1.5µs per edge for the largest
inputs our machine can handle.

2 “Realistic” Input Sizes
In the past few years, the cost ratio between main memory and the same amount

of hard disk space has consistently been between 100 and 200.Hence, in a balanced
system, the ratio between hard disk capacity and main memorysize will be of the
same order. Let us assume a disk capacity of128M . To represent an edge, algorithms
based on edge contraction need at least four words to describe the incident nodes,
the edge weight, and the original identity of the edge. Hence, the largest graph we
may ever want to process on a balanced machine will havem ≈ 128M/4 = 32M .
If we further assume that the sparsest “interesting” graphshave about2n edges we
get n ≤ 16M . A semiexternal implementation of Kruskal’s algorithm needs one
machine word per node so that we need node reduction by a factor of at most 16.
This factor might be up to five times smaller (non-inplace sorting, edge{u, v} stored
as(u, v) and (v, u) in previous algorithms, five words per edge) or larger (somewhat
unbalanced machine, even more sparse graphs). However, thecomplexity of simple
external algorithm as ours only depends logarithmically onthis factor so that the error
is not very big. We have also slightly “tuned” this discussion in favor of previous
algorithms. For example, Boruvka’s algorithm is most efficient compared to ours if
the reduction factor is a power of two.

3 Related Work
Boruvka’s algorithm [4, 17] was the first MST algorithm. Interestingly it is the

basis of most “advanced” MST algorithm. Conceptually, the algorithm is very simple:
Assume that all edge weights are different. In aBoruvka phase, find the lightest inci-
dent edge for each node. The setC of these edges can be output as part of the MST.
Now contract these edges, i.e., find a representative node for each connected compo-
nent of(V,C) and rename an edge{u, v} to {componentId(u), componentId(v)}.
This routine at least halves the number of nodes.

One Boruvka phase can be implemented externally to run withO(sort(m)) I/Os
[1, 3]. To achieve a node reduction by a factor two, our algorithm needs the same
asymptotic I/O complexity. However, a detailed analysis inthe full paper [8] shows
that our algorithm is both simpler and needs a factor around four less I/Os then the
most efficient external realization of a Boruvka phase that we could find [3].

Boruvka’s original (internal memory) algorithm repeatedly applies Boruvka phases
until only a single node remains. In this paper, when we talk about Boruvka’s algo-
rithm as an external algorithm, we assume that onlyO(log(n/M)) phases are executed
before switching to a semiexternal algorithm as described in Section 4. This choice of
base case should probably be considered as folklore.

Boruvka phases are also an ingredient of the asymptoticallybest internal algorithm
[10] that runs in expected linear time. This algorithm additionally contains a compo-
nent for reducing the number of edges based on random sampling. An external im-
plementation of this approach yields an I/O complexity ofO(sort(m + n)) [1]. The
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authors also discuss a deterministic, recursive, externalimplementation of Kruskal’s
algorithm that works inO

(

sort(m) + m
n sort(n) log(n/M)

)

I/Os. The base case is a
graph withO(M) edges. The full paper gives more details of these algorithms[8].

Several deterministic external algorithms are described by Arge, Brodal, and Toma
[3]. They start with an interesting alternative base case. Rather than reducing the
number of nodes until a semiexternal algorithm can be used they make the graph so
dense that the average node degree isB. Then an external implementation of the
Jarník-Prim algorithm [9, 18] takes over that stores edges in a priority queue. The
algorithm needs one random I/O for each node but for very dense graphs this I/Os
step can be amortized overB edge accesses. We have not used this base case since
for current disk technology (a block stores around216 edges) the semiexternal case is
reached much earlier than a case withE/V ≥ B. Although both our algorithm and
the external Jarník-Prim algorithm use an edge priority queue, they are quite different.
Our algorithm is a node reduction that does little else than priority queue accesses
whereas the external Jarník-Prim algorithm is a base case whose limiting factor are
random node accesses. The two algorithms also use differentpriorities. In particular,
our algorithm can be modified to use only a single node index for the priority whereas
the external Jarník-Prim algorithm needs to compare edge weights. This can translate
into a logarithmic factor difference in internal work. The main result in [3] is an
algorithm that reduces the number of nodes by a factorr in O(sort(m + n) log log r)
I/Os rather thanO(sort(m + n) log r).

4 Semi-External Algorithms
The base case of our external MST algorithm is asemiexternalalgorithm that is

applicable once the number of nodes is reduced toO(M). Abello, Buchsbaum, and
Westbrook [1] describe two such algorithms.

The simplest one is an adaptation of Kruskal’s algorithm: First sort the edges by
weight using external sorting. Then the edges are processedin order of increasing
weight. Kruskal’s algorithm maintains a minimum spanning forest (MSF)F of the
edges seen so far. An edge{u, v} is put intoF if it joins two components inF and
is discarded otherwise. The necessary operations can be implemented very efficiently
using a union-find data structure [24] if nodes are numbered0..n − 1.2 This data
structure can be implemented using asinglearray of integersa[0..n − 1]. If node i
is the representative of its component thena[i] ≥ n anda[i] − n is its merging rank.
Otherwisea[i] stores an index of another node in the compenent. The pointers of nodes
in a component form a tree rooted at the component representative. Since the merging
depths reach at mostdlog ne,3 a w bit word can represent node indices in the range
0..2w − w. For example, using 32 bit words we can represent up to 4 294 967 264
nodes.

The second algorithm needs even less I/Os since it scans the edges in their original,
unsorted order. Using dynamic trees [23] it is still possible to maintain the MSFF
of the edges seen so far using spaceO(n) and timeO(log n) per edge. However, the

2In this paper we usei..j as a shorthand for{i, . . . , j}.
3In this paper,log x stands forlog2 x.
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constant factors involved make this algorithm not very promising for a practical imple-
mentation. Not only are dynamic tree operations much more costly than operations on
a union find data structure, but also the savings in I/O volumecan be deceptive. For ex-
ample, the LEDA [13] implementation of dynamic trees needs at least ten times more
space for each node than an efficient implementation of the union-find data structure.
This means that our algorithm would need2 · sort(m) ln 10 additional I/Os to reduce
the number of nodes sufficiently to make the dynamic tree algorithm applicable.

A scanning based algorithm is still attractive for computing MSTs of fairly dense
graphs where the number of nodes is small enough for direct semiexternal treat-
ment. We have not included such graphs into the present studysince the I/O as-
pects of finding MSTs for them are not very interesting. However, it is worth not-
ing thatany internal MST algorithm with running timeT (n,m) can be transformed
into a semiexternal MST algorithm that scans the edges once and has internal over-
headO

(

m
n T (n,O(n))

)

: The unsorted edges are processed in batchesC of sizeΘ(n)
and we remember the MSFF of the edges seen so far. In each iteration, we set
F := MSF(C ∪ F ). In practice, one would use Krukal’s algorithm or the Jarník-
Prim algorithm. A theoretically interesting observation is that together with the linear
time randomized algorithm [10] we get a semiexternal MST algorithm with internal
overheadO(m + n).

5 Efficient Node Reduction
Similar to Boruvka’s algorithm, oursweeping algorithmis based on edge contrac-

tion. But the difference is that we identify only one MST edgeat a time. The most
abstract form of the algorithm is very simple. In each iteration, we remove a ran-
dom nodeu from the graph. We find the lightest edge{u, v} incident tou. By the
well known cut-property that underlies most MST algorithms, {u, v} must be an MST
edge. So, we output{u, v}, remove it fromE, andcontract it, i.e., all other edges
{u,w} incident tou are replaced by edges{v, w}. If we store the original identity of
each edge, we can reconstruct the MST from the edges that are output.

Theorem 1 The expected number of edges inspected by the abstract algorithm
until the number of nodes is reduced ton′ is bounded by2m ln n

n′
.

Proof: In the iteration wheni nodes are left (note thati = n in the first iteration), the
expected degree of a random node is at most2m/i. Hence, the expected number of
edges,Xi, inspected in iterationi is at most2m/i. By the linearity of expectation, the
total expected number of edges processed is

∑

n′<i≤n

E [Xi] ≤
∑

n′<i≤n

2m

i
= 2m

∑

n′<i≤n

1

i
= 2m





∑

1≤i≤n

1

i
−

∑

1≤i≤n′

1

i





= 2m(Hn − Hn′) ≤ 2m(ln n − lnn′) = 2m ln
n

n′

whereHn = lnn+0.577 · · ·+O(1/n) is then-th harmonic number.

As a first step towards an external implementation, we replace random selection
of nodes bysweepingthe nodes in an order fixed in advance. We assume that nodes
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ExternalPriorityQueue:Q
foreach (e = (u, v), c) ∈ E do Q.insert(((π(u), π(v)), c, e)) – – rename
currentNode :=−1 – –node currently being removed
i := n – –number of remaining nodes
while i > n′ do

((u, v), c, eold) := Q.deleteMin()
if u 6=currentNodethen – – lightest edge out of a new node

currentNode :=u – –nodeu is removed
i--
relinkTo :=v
outputeold – –MST edge

elsif v 6= relinkTo then Q.insert((v, relinkTo), c, eold)– – relink non-self-loops

Figure 1. An external implementation of the sweeping algorithm using a priority queue.

are numbered0..n − 1. We first rename the node indices using a random permutation
π : 0..n − 1 → 0..n − 1 and then remove renamed nodes in the ordern − 1, n − 2,
. . . , n′.

Theorem 2 The sweeping algorithm is equivalent to the abstract node reduction
algorithm.

Proof: In each iteration, the abstract algorithm can be viewed as fixing one value of
a random permutation of node indices. It does that by choosing one of the remaining
nodes uniformly at random. This exactly emulates the most commonly used algorithm
for generating uniformly distributed random permutations[12].

Note that the sweeping algorithm produces a graph with node indices0..n′−1, i.e.,
it can be directly used as input to our semiexternal Kruskal algorithm from Section 4.

5.1 A Priority Queue Implementation
There is a very simple external realization of the sweeping algorithm based on

priority queues of edges. Edges are stored in the form((u, v), c, eold) where(u, v)
is the edge in the current graph,c is the edge weight, andeold identifies the edge in
the original graph. The queue normalizes edges(u, v) in such a way thatu ≥ v. We
define a priority order((u, v), c, eold) < ((u′, v′), c′, e′old) iff u > u′ or u = u′ and
c < c′. With these conventions in place, the algorithm can be described using the
simple pseudocode in Figure 1. Ifeold is just an edge identifier, e.g. a position in the
input, an additional sorting step at the end can extract the actual MST edges. Ifeold

stores both incident vertices, the MST edge and its weight can be output directly.

Theorem 3 The sweeping algorithm can be implemented to work with
O(dm′/me sort(m)) I/Os if it processesm′ edges during its execution. It processes
the same number of edges as the abstract algorithm from Theorem 1.
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Proof: Renaming using a random permutation can be done usingO(sort(n + m))
I/Os (e.g. [19]).4 The algorithm performs onlym + m′ insertions and the queue
size never exceedsm. External priority queues can be implemented to do this using
m+m′

m sort(m) = O(dm′/me sort(m)) I/Os [5]. Outputting the MST edges takes
O(n/B) I/Os.

5.2 A Bucket Implementation
The priority queue implementation unnecessarily sorts theedges adjacent to a node

where we really only care about the smallest edge coming first. We now describe an
implementation of the sweeping algorithm that has internalwork linear in the total I/O
volume. We first make a few simplifying assumptions to get closer to our implemen-
tation.

The representation of edges and the renaming of nodes works as in the priority
queue implementation. As before, in iterationi, nodei is removed by outputting
the lightest edge incident to it and relinking all the other edges. We split the node
rangen′..n − 1 into k = O(M/B) equal sizedexternal buckets, i.e., subranges of
size(n − n′)/k and we define a special external bucket for the range0..n′ − 1. An
edge(u, v) with u > v is always stored in the bucket foru. We assume that the
current bucket (that containsi) completely fits into main memory. The other buckets
are stored externally with only a write buffer block to accommodate recently relinked
edges.

Wheni reaches a new external bucket, it is distributed tointernal buckets— one
for each node in the external bucket. The internal bucket fori is scanned twice. Once
for finding the lightest edge and once for relinking. Relinked edges destined for the
current external bucket are immediately put into the appropriate internal bucket. The
remaining edges are put into the write buffer of their external bucket. Write buffers
are flushed to disk when they become full.

When onlyn′ nodes are left, the bucket for range0..n′ − 1 is used as input for the
semi-external Kruskal algorithm from Section 4.

A more general implementation needs a special case for internal buckets that cor-
respond to very high degree nodes. However, although this somewhat complicates the
implementation, it will not have a negative effect on running time. On the contrary,
nodes with very high degree can be moved to the bucket for the semiexternal case di-
rectly. These nodes can be assigned the numbersn′ + 1, n′ + 2, . . . without danger of
confusing them with nodes with the same index in other buckets. To accomodate these
additional nodes in the semiexternal case,n′ has to be reduced by at mostO(M/B)
since form = O

(

M2/B
)

there can be at mostO(M/B) nodes with degreeΩ(M).
If the overall number of edges gets so large that even an average size external bucket

does not fit into internal memory, one has to switch to multi-level distribution schemes.
However, the added complexity for this is needed even for sorting so that we remain
I/O optimal and work optimal.

4In Appendix 1 we give an algorithm that produces pseudorandom permutations directly without additional
I/Os.
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5.3 Parallel Edges and Sparse Graphs
The basic sweeping algorithm described above can produce parallel edges by re-

linking. These edges remain parallel during subsequent relinking operations. Parallel
edges can be removed relatively easily. When scanning the internal bucket for node
i, the edges(i, v) are put into a hash table usingv as a key. The corresponding table
entry only keeps the lightest edge connectingi andv seen so far.

This leads to an asymptotic improvement for planar graphs, graphs with bounded
tree width and other classes of graphs that remain sparse under edge contraction:

Theorem 4 Consider a graph that hasO(n − i) edges after any sequence ofi
edge contractions. Then the sweeping algorithm with removal of parallel edges runs
usingO(sort(n)) I/Os.

Proof: We charge the cost for inspecting (and immediately discarding) a parallel
edge to the relinking operation that created the parallel edge. This demonstrates that
the algorithm performs only a constant factor more work thanan algorithm where
parallel edges are not even generated. Since the graph is sparse under edge contraction,
O(sort(n)) I/Os suffice to reduce the number of nodesand edgesby a factor at least
two. Hence, the I/O steps needed for the algorithm obey the recurrenceW (n) ≤
O(sort(n))+W (n/2). This recurrence has the solutionW (n) = O(sort(n)).

6 Implementation
Our external implementation makes extensive use of<stxxl>, an external imple-

mentation of the C++ standard template library STL. The semiexternal Kruskal and the
priority queue based sweeping algorithm become almost trivial using external sorting
[7] and external priority queues [20]. The bucket based implementation uses external
stacks to represent external buckets. The stacks have a single private output buffer and
they share a common pool of additional output buffers that facilitates overlapping of
output and internal computation. When a stack is switched to reading, it is assigned
additional private buffers to facilitate prefetching.

The internal aspects of the bucket implementation are also crucial. In particular,
we need a representation of internal buckets that is space efficient, cache efficient,
and can grow adaptively. Therefore, internal buckets are represented as linked lists of
small blocks that can hold several edges each. Edges in internal buckets do not store
their source node because this information is redundant.

Our implementation deviates in three aspects from the previous description. Edges
are stored as 5-tuples of 32 bit integers and store both endpoints of the original edge
directly. This saves an additional sorting phase at the end for collecting missing in-
formation on the MST edges and it allows us to process more then 232 edges without
resorting to cumbersome packed representations with 40 bitedge-ids. Our implemen-
tation of the Union-Find data structure uses a separate bytefor the merging rank. We
have not implemented the special case treatment for nodes ofvery high degree out-
lined in Section 5.2 because this case does not occur for the graph families studied
in [15]. We saw also no reason to invent or find such graph families since with the
special case treatment we could expect them to be easier to solve than other graphs.
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In any case, our priority queue based implementation coversthis case and performs
reasonably well for a single disk.

A more detailed account of the implementation is given in [21] and on the web
http://www.dominik-schultes.de/emmst/.

7 Experiments
Our starting point for designing experiments was the study by Moret and Shapiro

[15]. We have adopted the instance families forrandomgraphs with random edge
weights and randomgeometricgraphs where random points in the unit square are
connected to theird closest neighbors. In order to obtain a simple family of planar
graphs, we have addedgrid graphs with random edge weights where the nodes are
arranged in a grid and are connected to their (up to) four direct neighbors. We have
not considered the remaining instance families in [15] because they define rather dense
graphs that would be easy to handle semiexternally or they are specifically designed to
fool particular algorithms or heuristics. We have chosen the parameters of the graphs
so thatm is between2n and8n. Considerably denser graphs would be either solvable
semiexternally or too big for our machine.

The experiments have been performed on a low cost PC-server (around 3000 Euro
in July 2002) with two 2 GHz Intel Xeon processors, 1 GByte RAMand4×80 GByte
disks (IBM 120GXP) that are connected to the machine in a bottleneck-free way (see
[7] for more details on the hardware). This machine runs Linux 2.4.20 using the XFS
file system. Swapping was disabled. All programs were compiled withg++ version
3.2 and optimization level-O6. The total computer time spend for the experiments
was about 25 days producing a total I/O volume of several dozen Terabytes.

Figure 2 summarizes the results for the bucket implementation. Tables with de-
tailed numerical data can be found in Appendix 2. The internal implementations were
provided by Irit Katriel [11]. The curves only show the internal results for random
graphs — at least Kruskal’s algorithm shows very similar behavior for the other graph
classes. Our implementation can handle up to 20 million edges. Kruskal’s algorithm
is best for very sparse graphs (m ≤ 4n) whereas the Jarník-Prim algorithm (with a fast
implementation of pairing heaps) is fastest for denser graphs but requires more mem-
ory. Forn ≤ 160 000 000, we can run the semiexternal algorithm and get execution
times within a factor of two of the internal algorithm.5 The curves are almost flat and
very similar for all three graph families. This is not astonishing since Kruskal’s algo-
rithm is not very dependent on the structure of the graph. Beyond 160 000 000 nodes,
the full external algorithm is needed. This immediately costs us another factor of two
in execution time: We have additional costs for random renaming, node reduction, and
a blowup of the size of an edge from 12 bytes to 20 bytes (for renamed nodes). For
random graphs, the execution time keeps growing withn/M as predicted by the upper
bound from Theorem 1.

5Both the internal and the semiexternal algorithm have a numberof possibilities for further tuning (e.g.,
using integer sorting or a better external sorter for small elements). But none of these measures is likely to
yield more than a factor of 2.
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Figure 2. Execution time per edge form ≈ 2 ·n (top),m ≈ 4 ·n (center),m ≈ 8 ·n (bottom).
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The behavior for grid graphs is much better than predicted byTheorem 4. It is inter-
esting that similar effects can be observed for geometric graphs. This is an indication
that it is worth removing parallel edges for many nonplanar graphs.6 Interestingly, the
time per edgedecreaseswith m for grid graphs and geometric graphs. The reason
is that the time for the semiexternal base case does not increase proportionally to the
number of input edges. For example,5.6 · 108 edges of a grid graph with640 · 106

nodes survive the node reduction, and6.3 · 108 edges of a grid graph with twice the
number of edges.

Another observation is that form = 2560 ·106 and random or geometric graphs we
get the worst time per edge form ≈ 4n. Form ≈ 8n, we do not need to run the node
reduction very long. Form ≈ 2n we process less edges than predicted by Theorem 1
even for random graphs simply because one MST edge is removedfor each node.

We have made a few runs with even larger graphs. The largest one was a grid graph
with n = 232 which takes 96GByte just to represent the input. Even this graph that
required an I/O volume of about 830 GByte was processed in about 8h 40min.

The following small table shows running time inµs per edge for random graphs
with n = 320 ·106 andm = 640 ·106 where we varied the number of disks and where
we compare the priority queue implementation with the bucket implementation:

1 disk 4 disks
bucket implementation 6.7 4.3
priority queue implementation 11.0 8.9

Since the speedup for the bucket algorithm after quadrupling the number of disks is
only 1.56, one can conclude that even with a single disk and the internally efficient
bucket algorithm, the computation is not I/O-bound. This explains why the bucket
implementation brings a considerable improvement over thepriority queue implemen-
tation. Considering its simplicity, the priority queue implementation is still interesting
since it also achieves reasonable performance for a single disk.

8 Conclusions
We have demonstrated that massive minimum spanning tree problems filling sev-

eral hard disks can be solved “overnight” on a PC. The key algorithmic ingredient
for this result is the sweeping paradigm that yields simplerand faster algorithms than
previous approaches. This paradigm is also useful for otherproblems like connected
components, list ranking, tree rooting,. . . [22]. The efficient and relatively simple
implementation profits from the<stxxl> library that implements external sorting,
priority queues, and other basic data structures in an efficient way using parallel disks,
overlapping of I/O and computation, DMA directly to user space,. . .

An interesting challenge for the future is whether we can solve even larger MST
problems using parallel processors and external memory together. Here, the sweeping
paradigm seems to break down and other simplifications of existing algorithms are
sought for.

6Very few parallel edges are generated for random graphs. Therefore, switching off duplicate removal gives
about 13 % speedup for random graphs compared to the numbers given.
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Appendix
1 Fast Pseudo Random Permutations

For renaming nodes, we need a (pseudo)random permutationπ : 0..n − 1 → 0..n − 1.
Assume for now thatn is a square so that we can represent a nodei as a pair(a, b) with
i = a + b

√
n. Our permutations are constructed fromFeistelpermutations, i.e., permutations

of the formπf ((a, b)) = (b, a + f(b) mod
√

n) for some random mappingf : 0..
√

n − 1 →
0..

√
n − 1. Since

√
n is small, we can afford to implementf using a lookup table filled with

random elements. For example, forn = 232 the lookup table forf would require only 128
KByte. It is known that a permutationπ(x) = πf (πg(πh(πl(x)))) build by chaining four
Feistel permutations is “pseudorandom” in a sense useful for cryptography. The same holds if
the innermost and outermost permutation is replaced by an even simpler permutation [16]. In
our implementation we use just two stages of Feistel-Permutations. It is an interesting question
what provable performance guarantees for the sweep algorithm or other algorithmic problems
can be given for such permutations.

A permutationπ′ on 0.. d√ne2 − 1 can be transformed to a permutationπ on 0..n − 1 by
iteratively applyingπ′ until a value belown is obtained. Sinceπ′ is a permutation, this process
must eventually terminate. Ifπ′ is random, the expected number of iterations is close to1 and
it is unlikely that more than three iterations are necessary forany input.
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2 Detailed Measurement Data

Table A.1. (Semi-)External test cases.n: nodes,m: edges,t: elapsed time,p: processed
edges,E(p): expected value ofp according to Theorem 1,d: duplicates removed.

type n/106 m/106 t[s] t/m[µs] p/106 p/E(p) d/m

grid 40 80 177 2.21
grid 80 160 362 2.27
grid 160 320 738 2.31
grid 320 640 2 535 3.96 750 85 % 4 %
grid 640 1 280 4 712 3.68 2 492 70 % 13 %
grid 1 280 2 560 9 056 3.54 6 167 58 % 22 %

random 40 80 185 2.32
random 80 160 388 2.42
random 160 320 813 2.54
random 320 640 2 773 4.33 766 86 % 0 %
random 640 1 280 6 098 4.76 2 752 78 % 0 %
random 1 280 2 560 14 202 5.55 7 676 72 % 0 %
random 20 80 155 1.94
random 40 160 318 1.99
random 80 320 676 2.11
random 160 640 1 427 2.23
random 320 1 280 5 889 4.60 1 651 93 % 0 %
random 640 2 560 14 248 5.57 6 284 89 % 0 %
random 10 80 142 1.77
random 20 160 286 1.79
random 40 320 591 1.85
random 80 640 1 242 1.94
random 160 1 280 2 627 2.05
random 320 2 560 12 370 4.83 3 426 97 % 0 %

geometric 40 75 183 2.45
geometric 80 149 377 2.53
geometric 160 298 787 2.64
geometric 320 596 2 175 3.65 644 78 % 7 %
geometric 640 1 190 3 797 3.18 1 949 59 % 13 %
geometric 20 71 148 2.09
geometric 40 141 300 2.13
geometric 80 282 627 2.22
geometric 160 564 1 333 2.36
geometric 320 1 130 4 126 3.66 1 275 82 % 18 %
geometric 10 68 124 1.84
geometric 20 135 246 1.82
geometric 40 270 511 1.89
geometric 80 540 1 067 1.98
geometric 160 1 080 2 209 2.04
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