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Abstract We develop an external memory algorithm for computing minimum spanning
trees. The algorithm is considerably simpler than previously known edtern
memory algorithms for this problem and needs a factor of at least fesi/@s
for realistic inputs.

Our implementation indicates that this algorithm processes graphs only lim-
ited by the disk capacity of most current machines in time no more thana fac
2-5 of a good internal algorithm with sufficient memory space.

Keywords:  secondary memory, random permutation, time forward processiteynal pri-
ority queue, external graph algorithm

1 Introduction

The high capacity and low price of hard disks makes it indregg attractive to
process huge data sets using cheap PC hardware. Howevlargeeccess latency
of such mechanical devices requires the design of exterpalary algorithms that
achieve high locality of access. A simple and successfulahfmd external memory
assumes a limited fast memory of sixeand a large memory that can be accessed in
consecutive blocks of sizB in one I/O step [2].

While simple algorithmic problems like sorting have very @éit external algo-
rithms, even simple graph problems are quite difficult toesddr general graphs. For
example, depth first search has no efficient external solutiRefer to [14, Chap-
ters 3-5] for an overview. One of the most important exceystis the minimum
spanning tree (MST) problem: Consider an undirected cdedegraphG with n
nodes andn edges. Edges have nonnegative weights. A minimum spanreeg t

*This work was partially supported by DFG grant SA 933/1-1 #melIST Programme of the EU under
contract number IST-1999-14186 (ALCOM-FT).
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of G is a subset of edges with minimum total weight that forms axsjpey tree of

G. If the graph is not connected, most algorithms are easifpted to find amini-
mum spanning foregMSF), i.e., a minimum spanning tree of each connected com-
ponent. The MST problem can be solvedifsort(m)) expected /O steps [1] where
sort(N) = O(N/Blog,, 5 N/B) denotes the number of I/O steps required for ex-
ternal sorting [2]. Section 3 gives more details on previsask. We are not aware

of any implementations of external MST algorithms. One oeasiay be that even
the simplest previous /O efficient MST algorithms turn cutoe quite complicated

to implement. In the full paper we take a more detailed lookoshe implementation
details of previous algorithms and the resulting 1/0 ovadse

In this paper we describe the design, analysis, implementaand experimen-
tal evaluation of a very simple randomized algorithm foreeml memory minimum
spanning trees.

We begin in Section 4 with a discussions&mi-externahlgorithms that are appli-
cable ifn = O(M), i.e., there is enough internal memory to store a constambeu
of words for each node. We choose a simple adaptation of létisskgorithm [1] that
needs only a single machine word for each node.

If n > M, all known external algorithms reduce the number of nodesdyract-
ing MST edges: Ife = (u,v) € E is known to be an MST edge, we can remave
from the problem by outputting and identifyingu andv, e.g., by removing node
and renaming an edge of the fofm w) to a new edgév, w). By remembering where
(v,w) came from, we can reconstruct the MST of the original grapimfthe MST
of the smaller graph. Our main algorithmic innovation is ayv&mple randomized
node reduction algorithm that removes one node at a time fhengraph. Section 5
develops this idea from an abstract algorithm over an eateealization using prior-
ity queues to a bucket based implementation that reduceshaitoverhead. Besides
being simpler and faster than previous node reduction difgs, our algorithm needs
to store each edge only once, whereas previous algorittorsan edgdu, v} twice,
once agu,v) and once agv, u).

The semiexternal algorithm from Section 4 and the node témludrom Sec-
tion 5 can be combined to an external MST algorithm with elged&/O complexity
O(sort(m) [log(n/M)]). This seems to be inferior by a factor o (n/M) to the
best previous algorithms. However, in Section 2 we arguesthid/ < 16 for any
problem that runs on a “well balanced” machine. Herog(n/M) will be a small
constant. A comparison with previous algorithms in the fdper indicates that for
all such inputs our algorithm uses at least a factor fourll€sthan all previous algo-
rithms. Moreover, ifn /M should really get large, our node reduction algorithm could
be used to speed up asymptotically better algorithms by #asiconstant factor. For
graphs that areparse under edge contractiamthe sense of [6] (e.g., planar graphs
or graphs with bounded tree width), our algorithm achiev@srgptotically optimal
performance o®(sort(m)) I/Os.

In Section 7 we report about an implementation usisgxx1>,* an external imple-
mentation of the C++ STL library. Using a PC and 4 cheap digksimplementation

Ihttp://www.mpi-sb.mpg.de/ rdementi/stxx1.html
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can solve instances with up 232 nodes using about/s per edge. (About 2,6 per
edge when the semi-external algorithm suffices.) The béstrial algorithm for very
sparse graphs — Kruskal's algorithm — needs about 144 fser edge for the largest
inputs our machine can handle.

2 “Realistic” Input Sizes

In the past few years, the cost ratio between main memory lendame amount
of hard disk space has consistently been between 100 andH202e, in a balanced
system, the ratio between hard disk capacity and main mesineywill be of the
same order. Let us assume a disk capacity28f\/. To represent an edge, algorithms
based on edge contraction need at least four words to desttrébincident nodes,
the edge weight, and the original identity of the edge. Hetloe largest graph we
may ever want to process on a balanced machine will have 128M /4 = 32M.

If we further assume that the sparsest “interesting” grdph& aboubn edges we
getn < 16M. A semiexternal implementation of Kruskal’s algorithm deeone
machine word per node so that we need node reduction by a faictd most 16.
This factor might be up to five times smaller (non-inplacdiagr edge{u, v} stored
as(u,v) and (v, u) in previous algorithms, five words per edge) or larger (sohaw
unbalanced machine, even more sparse graphs). Howevemithgexity of simple
external algorithm as ours only depends logarithmicallyhasfactor so that the error
is not very big. We have also slightly “tuned” this discussia favor of previous
algorithms. For example, Boruvka’s algorithm is most effiticompared to ours if
the reduction factor is a power of two.

3 Related Work

Boruvka's algorithm [4, 17] was the first MST algorithm. lrastingly it is the
basis of most “advanced” MST algorithm. Conceptually, thy@gthm is very simple:
Assume that all edge weights are different. IBaruvka phasgfind the lightest inci-
dent edge for each node. The 6&bf these edges can be output as part of the MST.
Now contract these edges, i.e., find a representative nodstd connected compo-
nent of (V, C') and rename an edde:, v} to {componentld(u), componentld(v)}.
This routine at least halves the number of nodes.

One Boruvka phase can be implemented externally to run @{#ort(m)) I/Os
[1, 3]. To achieve a node reduction by a factor two, our atparineeds the same
asymptotic 1/0O complexity. However, a detailed analysishia full paper [8] shows
that our algorithm is both simpler and needs a factor aroond liess I/Os then the
most efficient external realization of a Boruvka phase thatwauld find [3].

Boruvka’s original (internal memory) algorithm repeatedpplies Boruvka phases
until only a single node remains. In this paper, when we thldua Boruvka’s algo-
rithm as an external algorithm, we assume that éliog(n/M)) phases are executed
before switching to a semiexternal algorithm as descrihe®eiction 4. This choice of
base case should probably be considered as folklore.

Boruvka phases are also an ingredient of the asymptotibaByinternal algorithm
[10] that runs in expected linear time. This algorithm aiddially contains a compo-
nent for reducing the number of edges based on random sampim external im-
plementation of this approach yields an /O complexitytgort(m + n)) [1]. The
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authors also discuss a deterministic, recursive, extémakementation of Kruskal's
algorithm that works irO (sort(m) + “sort(n)log(n/M)) 1/Os. The base case is a
graph withO (M) edges. The full paper gives more details of these algori{8ins

Several deterministic external algorithms are descrilye@irje, Brodal, and Toma
[3]. They start with an interesting alternative base casath& than reducing the
number of nodes until a semiexternal algorithm can be usegniake the graph so
dense that the average node degre®.isThen an external implementation of the
Jarnik-Prim algorithm [9, 18] takes over that stores edges priority queue. The
algorithm needs one random 1/O for each node but for very elgnaphs this 1/0s
step can be amortized ové& edge accesses. We have not used this base case since
for current disk technology (a block stores aro@ifi edges) the semiexternal case is
reached much earlier than a case witil” > B. Although both our algorithm and
the external Jarnik-Prim algorithm use an edge priorityuguéhey are quite different.
Our algorithm is a node reduction that does little else thaaripy queue accesses
whereas the external Jarnik-Prim algorithm is a base cassenMimiting factor are
random node accesses. The two algorithms also use differienities. In particular,
our algorithm can be modified to use only a single node indet#® priority whereas
the external Jarnik-Prim algorithm needs to compare edightge This can translate
into a logarithmic factor difference in internal work. Theaim result in [3] is an
algorithm that reduces the number of nodes by a factorO(sort(m + n) loglog r)
I/Os rather thar©(sort(m + n) logr).

4 Semi-External Algorithms

The base case of our external MST algorithm isemiexternahlgorithm that is
applicable once the number of nodes is reduce@(#/). Abello, Buchsbaum, and
Westbrook [1] describe two such algorithms.

The simplest one is an adaptation of Kruskal’s algorithnrstFsort the edges by
weight using external sorting. Then the edges are procdesedler of increasing
weight. Kruskal's algorithm maintains a minimum spanningett (MSF)F' of the
edges seen so far. An edde, v} is put into F if it joins two components irF’ and
is discarded otherwise. The necessary operations can benmapted very efficiently
using a union-find data structure [24] if nodes are numbéred — 1.2 This data
structure can be implemented usinginglearray of integers[0..n — 1]. If node:
is the representative of its component théi} > n anda[i] — n is its merging rank.
Otherwiseu[i] stores an index of another node in the compenent. The psioteaodes
in a component form a tree rooted at the component reprdésentdince the merging
depths reach at mostogn],® aw bit word can represent node indices in the range
0..2% — w. For example, using 32 bit words we can represent up to 4 29468
nodes.

The second algorithm needs even less I/0s since it scanddles & their original,
unsorted order. Using dynamic trees [23] it is still possitd maintain the MSH"
of the edges seen so far using sp&e:) and timeO(log n) per edge. However, the

2In this paper we usé.j as a shorthand fofi, . .. ,5}.
3In this paperjog x stands follog, .

(c) 2004 IFIP



199

constant factors involved make this algorithm not very piging for a practical imple-

mentation. Not only are dynamic tree operations much mos#ycthan operations on
a union find data structure, but also the savings in I/O voloamebe deceptive. For ex-
ample, the LEDA [13] implementation of dynamic trees neddsast ten times more
space for each node than an efficient implementation of tlentfind data structure.

This means that our algorithm would ne2dsort(m) In 10 additional I/Os to reduce
the number of nodes sufficiently to make the dynamic treerithgo applicable.

A scanning based algorithm is still attractive for compgtMSTs of fairly dense
graphs where the number of nodes is small enough for direnteséernal treat-
ment. We have not included such graphs into the present stindg the 1/0 as-
pects of finding MSTs for them are not very interesting. Hosveit is worth not-
ing thatany internal MST algorithm with running timé&'(n, m) can be transformed
into a semiexternal MST algorithm that scans the edges omdédas internal over-
headO (T (n,O(n))): The unsorted edges are processed in bat€heksizeO(n)
and we remember the MSF of the edges seen so far. In each iteration, we set
F := MSF(C U F). In practice, one would use Krukal’s algorithm or the Jarnik
Prim algorithm. A theoretically interesting observatisrthat together with the linear
time randomized algorithm [10] we get a semiexternal MSToatgm with internal
overhead?(m + n).

5 Efficient Node Reduction

Similar to Boruvka’s algorithm, ousweeping algorithnis based on edge contrac-
tion. But the difference is that we identify only one MST eddea time. The most
abstract form of the algorithm is very simple. In each iteratwe remove a ran-
dom nodeu from the graph. We find the lightest edge, v} incident tou. By the
well known cut-property that underlies most MST algorith#nts, v} must be an MST
edge. So, we outpdtu, v}, remove it fromE, andcontractit, i.e., all other edges
{u,w} incident tou are replaced by edgds, w}. If we store the original identity of
each edge, we can reconstruct the MST from the edges thatigmet.o

THEOREM 1 The expected number of edges inspected by the abstracithfgor
until the number of nodes is reducedrtois bounded bym In 7.

Proof: In the iteration when nodes are left (note that= n in the first iteration), the
expected degree of a random node is at i@esti. Hence, the expected number of
edges X, inspected in iterationis at mos2m/i. By the linearity of expectation, the
total expected number of edges processed is

2m 1 1 1

2, BXI= B Towm d w29 g
n'<i<n n'<i<n n’<i<n 1<i<n 1<i<n’/

=2m(H, — H,) <2m(lnn —1Inn') = 2mIn ﬁ/

n

whereH,, = Inn+0.577 - - -+O(1/n) is then-th harmonic number. ]

As a first step towards an external implementation, we repiandom selection
of nodes bysweepinghe nodes in an order fixed in advance. We assume that nodes
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ExternalPriorityQueue?)

foreach (e = (u,v),¢) € E do Q.insert(((mw(u), (v)), ¢, e)) ——rename
currentNode =1 ——node currently being removed
1:=n ——number of remaining nodes

while 7 > n/ do
((u,v), ¢, e01q) = Q.deleteMin()

if u #£currentNoddhen ——lightest edge out of a new node
currentNode = ——nodeu is removed
i——
relinkTo :=v
outputegq ——MST edge

elsifv # relinkTo then Q.insert((v, relinkTo), ¢, eq1a)——relink non-self-loops

Figure 1. An external implementation of the sweeping algorithm using a priority queue.

are numbered..n — 1. We first rename the node indices using a random permutation
m:0.n—1 — 0..n — 1 and then remove renamed nodes in the order1, n — 2,

li
,n'.

THEOREM 2 The sweeping algorithm is equivalent to the abstract nodecton
algorithm.

Proof: In each iteration, the abstract algorithm can be viewed asffi@ne value of
a random permutation of node indices. It does that by chgasie of the remaining
nodes uniformly at random. This exactly emulates the masiconly used algorithm
for generating uniformly distributed random permutatifi#y. |

Note that the sweeping algorithm produces a graph with nudiees)..n’ — 1, i.e.,
it can be directly used as input to our semiexternal Kruskgrithm from Section 4.

5.1 A Priority Queue Implementation

There is a very simple external realization of the sweepiggrahm based on
priority queues of edges. Edges are stored in the farmo), ¢, eq1q) Where (u, v)
is the edge in the current graphis the edge weight, anel, 4 identifies the edge in
the original graph. The queue normalizes edge®) in such a way that. > v. We
define a priority ordef(u,v), ¢, eqa) < ((v/,0"),c,ely) iff u > v oru =« and
c < . With these conventions in place, the algorithm can be destrusing the
simple pseudocode in Figure 1.df4 is just an edge identifier, e.g. a position in the
input, an additional sorting step at the end can extract theahMST edges. &4
stores both incident vertices, the MST edge and its weighbesoutput directly.

THEOREM 3 The sweeping algorithm can be implemented to work with
O([m//m]sort(m)) I/Os if it processesn’ edges during its execution. It processes
the same number of edges as the abstract algorithm from €heir
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Proof: Renaming using a random permutation can be done uSifgrt(n + m))
I/0s (e.g. [19])* The algorithm performs onlyn + m’ insertions and the queue
size never exceeds. External priority queues can be implemented to do thisgusin
mjj;”’ sort(m) = O([m’'/m]sort(m)) I/Os [5]. Outputting the MST edges takes
O(n/B) lIOs. ]

5.2 A Bucket Implementation

The priority queue implementation unnecessarily sortetiges adjacent to a node
where we really only care about the smallest edge coming fivstnow describe an
implementation of the sweeping algorithm that has intewwak linear in the total I/O
volume. We first make a few simplifying assumptions to gesetdo our implemen-
tation.

The representation of edges and the renaming of nodes werks the priority
gueue implementation. As before, in iteratignnodei is removed by outputting
the lightest edge incident to it and relinking all the othdges. We split the node
rangen’..n — 1 into k = O(M/B) equal sizecexternal bucketsi.e., subranges of
size(n — n’)/k and we define a special external bucket for the raihgé — 1. An
edge(u,v) with u > v is always stored in the bucket far We assume that the
current bucket (that contairiy completely fits into main memory. The other buckets
are stored externally with only a write buffer block to acenodate recently relinked
edges.

Wheni reaches a new external bucket, it is distributeéhternal buckets— one
for each node in the external bucket. The internal bucket fscanned twice. Once
for finding the lightest edge and once for relinking. Relidlezlges destined for the
current external bucket are immediately put into the appatginternal bucket. The
remaining edges are put into the write buffer of their exaébucket. Write buffers
are flushed to disk when they become full.

When onlyn’ nodes are left, the bucket for rangien’ — 1 is used as input for the
semi-external Kruskal algorithm from Section 4.

A more general implementation needs a special case fonaitbuckets that cor-
respond to very high degree nodes. However, although thigstbat complicates the
implementation, it will not have a negative effect on rumntime. On the contrary,
nodes with very high degree can be moved to the bucket foraiméexternal case di-
rectly. These nodes can be assigned the numbersl, »’ + 2, ... without danger of
confusing them with nodes with the same index in other bigckiet accomodate these
additional nodes in the semiexternal casehas to be reduced by at maS{1//B)
since form = O(M?/B) there can be at mog§2(1/B) nodes with degre® (M).

If the overall number of edges gets so large that even angesiae external bucket
does not fit into internal memory, one has to switch to meiel distribution schemes.
However, the added complexity for this is needed even fdirgpso that we remain
I/O optimal and work optimal.

4In Appendix 1 we give an algorithm that produces pseudorangermutations directly without additional
1/Os.
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5.3 Parallel Edges and Sparse Graphs

The basic sweeping algorithm described above can produedigdadges by re-
linking. These edges remain parallel during subsequeinkieyy operations. Parallel
edges can be removed relatively easily. When scanning temadtbucket for node
i, the edgegi, v) are put into a hash table usingas a key. The corresponding table
entry only keeps the lightest edge connectimgdv seen so far.

This leads to an asymptotic improvement for planar graprepitgs with bounded
tree width and other classes of graphs that remain sparss adde contraction:

THEOREM 4 Consider a graph that ha®(n — i) edges after any sequence iof
edge contractions. Then the sweeping algorithm with refnoivparallel edges runs
usingO(sort(n)) 1/0s.

Proof: We charge the cost for inspecting (and immediately disog)da parallel
edge to the relinking operation that created the parallgéed his demonstrates that
the algorithm performs only a constant factor more work tharalgorithm where
parallel edges are not even generated. Since the graphrsespaler edge contraction,
O(sort(n)) 1/Os suffice to reduce the number of nodesl edgedy a factor at least
two. Hence, the I/O steps needed for the algorithm obey tberrencelV (n) <
O(sort(n))+W (n/2). This recurrence has the solutitin(n) = O(sort(n)). n

6 Implementation

Our external implementation makes extensive usesakx1>, an external imple-
mentation of the C++ standard template library STL. The s&tarnal Kruskal and the
priority queue based sweeping algorithm become almosaktising external sorting
[7] and external priority queues [20]. The bucket based am@ntation uses external
stacks to represent external buckets. The stacks havela pmgte output buffer and
they share a common pool of additional output buffers theitifates overlapping of
output and internal computation. When a stack is switche@ading, it is assigned
additional private buffers to facilitate prefetching.

The internal aspects of the bucket implementation are alscial. In particular,
we need a representation of internal buckets that is spdiceerf, cache efficient,
and can grow adaptively. Therefore, internal buckets greeeented as linked lists of
small blocks that can hold several edges each. Edges imaitienckets do not store
their source node because this information is redundant.

Our implementation deviates in three aspects from the pusvilescription. Edges
are stored as 5-tuples of 32 bit integers and store both émdpaf the original edge
directly. This saves an additional sorting phase at the enddllecting missing in-
formation on the MST edges and it allows us to process morextfeedges without
resorting to cumbersome packed representations with 4@lgi-ids. Our implemen-
tation of the Union-Find data structure uses a separatefbiythe merging rank. We
have not implemented the special case treatment for nodesrptigh degree out-
lined in Section 5.2 because this case does not occur forrdghdamilies studied
in [15]. We saw also no reason to invent or find such graph famgince with the
special case treatment we could expect them to be easielvetban other graphs.
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In any case, our priority queue based implementation cavésscase and performs
reasonably well for a single disk.

A more detailed account of the implementation is given in] [2id on the web
http://www.dominik-schultes.de/emmst/.

7 Experiments

Our starting point for designing experiments was the studivbret and Shapiro
[15]. We have adopted the instance families fandomgraphs with random edge
weights and randongeometricgraphs where random points in the unit square are
connected to theid closest neighbors. In order to obtain a simple family of ptan
graphs, we have addegtid graphs with random edge weights where the nodes are
arranged in a grid and are connected to their (up to) fourctlimeighbors. We have
not considered the remaining instance families in [15] beedhey define rather dense
graphs that would be easy to handle semiexternally or thegacifically designed to
fool particular algorithms or heuristics. We have chosenghrameters of the graphs
so thatm is betweer2n and8n. Considerably denser graphs would be either solvable
semiexternally or too big for our machine.

The experiments have been performed on a low cost PC-semsemd 3000 Euro
in July 2002) with two 2 GHz Intel Xeon processors, 1 GByte RAMI4 x 80 GByte
disks (IBM 120G XP) that are connected to the machine in ddramtk-free way (see
[7] for more details on the hardware). This machine runs kiRi4.20 using the XFS
file system. Swapping was disabled. All programs were cadpiith g++ version
3.2 and optimization levet06. The total computer time spend for the experiments
was about 25 days producing a total I/0O volume of severalmldeeabytes.

Figure 2 summarizes the results for the bucket implemeamtatiTables with de-
tailed numerical data can be found in Appendix 2. The infemplementations were
provided by Irit Katriel [11]. The curves only show the intaf results for random
graphs — at least Kruskal's algorithm shows very similarasédr for the other graph
classes. Our implementation can handle up to 20 million edgeuskal’s algorithm
is best for very sparse grapha (< 4n) whereas the Jarnik-Prim algorithm (with a fast
implementation of pairing heaps) is fastest for denserhgdgut requires more mem-
ory. Forn < 160 000 000, we can run the semiexternal algorithm and geutea
times within a factor of two of the internal algorithtriThe curves are almost flat and
very similar for all three graph families. This is not as&iing since Kruskal’s algo-
rithm is not very dependent on the structure of the graphoBdyl60 000 000 nodes,
the full external algorithm is needed. This immediatelytsas another factor of two
in execution time: We have additional costs for random réngmmode reduction, and
a blowup of the size of an edge from 12 bytes to 20 bytes (foamesd nodes). For
random graphs, the execution time keeps growing wjith/ as predicted by the upper
bound from Theorem 1.

5Both the internal and the semiexternal algorithm have a numbpossibilities for further tuning (e.g.,
using integer sorting or a better external sorter for smalineints). But none of these measures is likely to
yield more than a factor of 2.
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Figure 2. Execution time per edge fon = 2-n (top);n ~ 4-n (center);n = 8-n (bottom).
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The behavior for grid graphs is much better than predictetigorem 4. Itis inter-
esting that similar effects can be observed for geometdplgs. This is an indication
that it is worth removing parallel edges for many nonplamaps® Interestingly, the
time per edgalecreasesvith m for grid graphs and geometric graphs. The reason
is that the time for the semiexternal base case does notsegroportionally to the
number of input edges. For example6 - 10® edges of a grid graph wité40 - 10°
nodes survive the node reduction, ahd - 10® edges of a grid graph with twice the
number of edges.

Another observation is that fen = 2560 - 10° and random or geometric graphs we
get the worst time per edge for ~ 4n. Form =~ 8n, we do not need to run the node
reduction very long. Fom = 2n we process less edges than predicted by Theorem 1
even for random graphs simply because one MST edge is renfiovedch node.

We have made a few runs with even larger graphs. The largestas a grid graph
with n = 232 which takes 96GByte just to represent the input. Even thaplgthat
required an 1/O volume of about 830 GByte was processed inta8io40min.

The following small table shows running time jis per edge for random graphs
with n = 320-10° andm = 640 - 10 where we varied the number of disks and where
we compare the priority queue implementation with the btickplementation:

| 1disk 4 disks
bucket implementation 6.7 4.3
priority queue implementation 11.0 8.9

Since the speedup for the bucket algorithm after quadrgghie number of disks is
only 1.56, one can conclude that even with a single disk aadrternally efficient
bucket algorithm, the computation is not 1/0-bound. Thiplains why the bucket
implementation brings a considerable improvement oveptlogity queue implemen-
tation. Considering its simplicity, the priority queue ilamentation is still interesting
since it also achieves reasonable performance for a sifgle d

8 Conclusions

We have demonstrated that massive minimum spanning trdxepme filling sev-
eral hard disks can be solved “overnight” on a PC. The keyralguic ingredient
for this result is the sweeping paradigm that yields simptet faster algorithms than
previous approaches. This paradigm is also useful for gifelems like connected
components, list ranking, tree rooting,. [22]. The efficient and relatively simple
implementation profits from thestxx1> library that implements external sorting,
priority queues, and other basic data structures in an@ffigvay using parallel disks,
overlapping of 1/0 and computation, DMA directly to userspa. .

An interesting challenge for the future is whether we caneselven larger MST
problems using parallel processors and external memoettieg Here, the sweeping
paradigm seems to break down and other simplifications aftiagi algorithms are
sought for.

6Very few parallel edges are generated for random graphseTdre, switching off duplicate removal gives
about 13 % speedup for random graphs compared to the numbers giv
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Appendix

1 Fast Pseudo Random Permutations

For renaming nodes, we need a (pseudo)random permutatiofl.n — 1 — 0..n — 1.
Assume for now that is a square so that we can represent a nods a pair(a, b) with
i = a + by/n. Our permutations are constructed fré®istelpermutations, i.e., permutations
of the formzs((a, b)) = (b,a + f(b) mod /n) for some random mapping: 0.../n — 1 —
0../n — 1. Sincey/n is small, we can afford to implemerftusing a lookup table filled with
random elements. For example, for= 232 the lookup table forf would require only 128
KByte. It is known that a permutation(z) = 7 (g (ms(m (2)))) build by chaining four
Feistel permutations is “pseudorandom” in a sense useful for crygpiby. The same holds if
the innermost and outermost permutation is replaced by an even singpteugation [16]. In
our implementation we use just two stages of Feistel-Permutations. It is agsitiing question
what provable performance guarantees for the sweep algorithm er altjorithmic problems
can be given for such permutations.

A permutationt’ on0.. [\/ﬁf — 1 can be transformed to a permutatieron 0..n — 1 by
iteratively applyingr’ until a value belown is obtained. Since’ is a permutation, this process
must eventually terminate. #’ is random, the expected number of iterations is closeaad
it is unlikely that more than three iterations are necessargriginput.
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2 Detailed Measurement Data

Table A.1. (Semi-)External test casesi: nodes,m: edges,t: elapsed timep: processed
edgesF(p): expected value gf according to Theorem %; duplicates removed.

| type | n,/10° | m/10° | t[s] | t/mus] | p/10° | p/E(p) | d/m ‘
grid 40 80 177 2.21
grid 80 160 362 2.27
grid 160 320 738 2.31
grid 320 640 | 2535 3.96 750 85% | 4%
grid 640 1280 | 4712 3.68 | 2492 70% | 13%
grid 1280| 2560| 9056 3.54 | 6167 58% | 22 %
random 40 80 185 2.32
random 80 160 388 2.42
random 160 320 813 2.54
random 320 640 | 2773 4.33 766 86% | 0%
random 640 1280| 6098 476 | 2752 78% | 0%
random 1280 | 2560 14202 555 | 7676 2% | 0%
random 20 80 155 1.94
random 40 160 318 1.99
random 80 320 676 211
random 160 640 | 1427 2.23
random 320 1280| 5889 460 | 1651 9B3% | 0%
random 640 | 2560 | 14248 5.57 | 6284 89% | 0%
random 10 80 142 1.77
random 20 160 286 1.79
random 40 320 501 1.85
random 80 640 | 1242 1.94
random 160 1280 2627 2.05
random 320 | 2560 12370 483 | 3426 97% | 0%
geometric 40 75 183 2.45
geometric 80 149 377 2.53
geometric 160 298 787 2.64
geometric 320 596 | 2175 3.65 644 8% | 7%
geometric 640 1190| 3797 3.18| 1949 50% | 13%
geometric 20 71 148 2.09
geometric 40 141 300 2.13
geometric 80 282 627 2.22
geometric 160 564 | 1333 2.36
geometric 320 1130| 4126 3.66 | 1275 82% | 18%
geometric 10 68 124 1.84
geometric 20 135 246 1.82
geometric 40 270 511 1.89
geometric 80 540 | 1067 1.98
geometric 160 1080| 2209 2.04
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