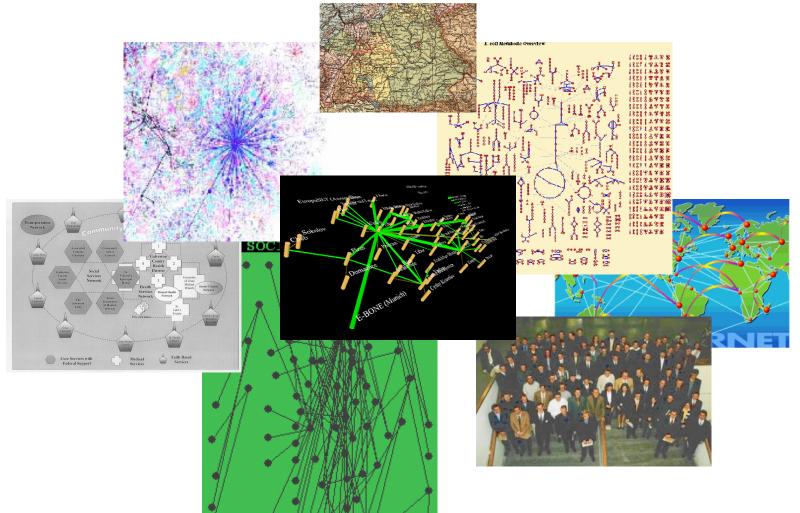


Algorithmik großer und komplexer Netzwerke DFG-Schwerpunktprogramm Nr. 1126

Building Abstraction Hierarchies from Unbounded-arity Relations

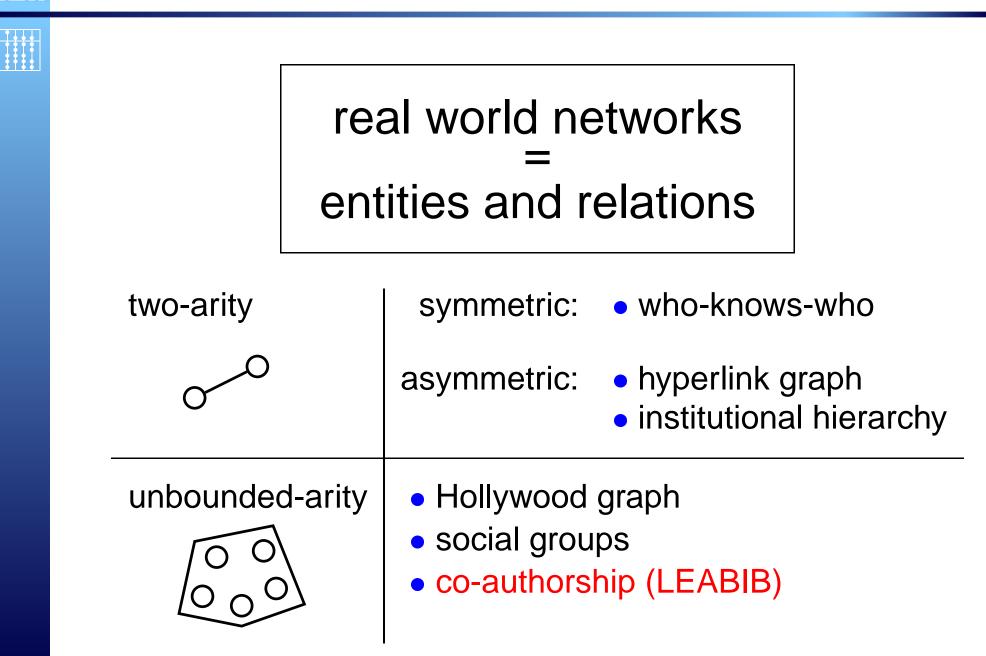
Klaus Holzapfel

Lehrstuhl für Effiziente Algorithmen

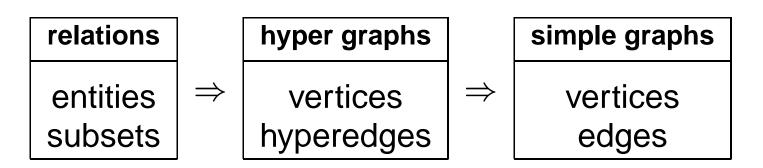

Fakultät für Informatik an der Technischen Universität München

Annual Meeting, March 26–28, 2003 (Tübingen)

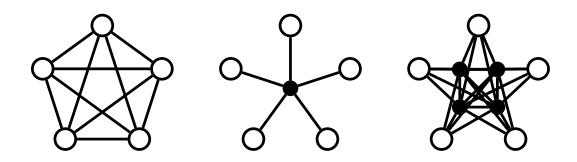
าปกก



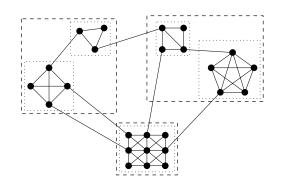
· ••••••

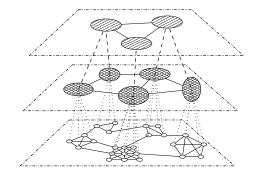


Basic Concepts of Dealing with Real World Networks



חחטחר


- Transformation of entities to vertices (multiple occurrence, spelling)
- Introduction of weights for the hyperedges (size of subset, elements of subset)
- Transformation of hyperedge to edge



- Input properties: large-scale (10^5 authors, 10^{10} web pages)
 - fuzzy data (noisy, incomplete)

Opportunities:

- reduction of the data
 - \rightarrow concentrating on a subset of entities
- abstraction of the data
 - \rightarrow representing groups of entities

Semantics of Hierarchies on Relations

חחרו

- Aim: groups of entities should represent strong relations between their elements
 - relations between those groups should represent the relations between its group members
- Applications: general multi-arity relations
 - \rightarrow social centers / structure
 - → project management
 - co-citation relation (LEABIB)
 - \rightarrow group detection (research, referees)
 - \rightarrow quality
 - → query enhancement

Approaches

How to detect groups?

• connectivity

→ optimize number of disjoint paths between any two vertices in the group

weighted Min-Cut (Ratio-Cut)

 \rightarrow optimize the quantity: $\frac{\text{Cut}_{\text{Size}(A,B)}}{\|A\| \cdot \|B\|}$

- density based
 - \rightarrow optimize the number of relations between the entities in the group (e.g. ||E||)

- Motivation: small-world characteristics (sparse graphs with dense substructures)
 - looking for regions with significantly higher average degree

Problem:	$\gamma extsf{-}Dense$ Subgraph-Problem ($\gamma extsf{-}DSP$)
Input:	Graph $G, k \in \mathbb{N}$
Output:	Does there exist a subgraph G' of size k having at least $\gamma(k)$ edges

•
$$\gamma(k) = {k \choose 2}$$
 γ -DSP = CLIQUE \in NP-C
• $\gamma(k) = 0$ γ -DSP \in P

Complexity-Results [H. et al. CIAC 2003]

Theorem. Let $\gamma : \mathbb{N} \to \mathbb{N}$ be a function that is computable in polynomial time:

1. If $\gamma(k) = k + O(1)$ then γ -DSP is in **P**.

<u>իրՄոր</u>

2. If $\gamma(k) = k + \Omega(k^{\epsilon})$, for some rational number $0 < \epsilon < 2$, then γ -DSP is NP-complete.

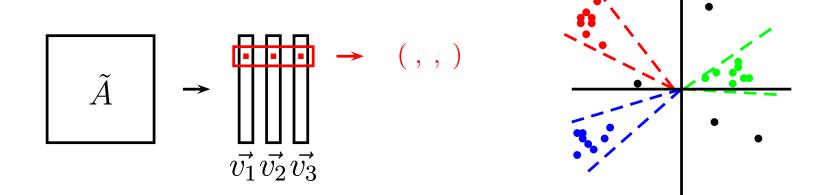
Theorem. Let $\gamma : \mathbb{N} \to \mathbb{N}$ be a function that is computable in polynomial time.

If $\gamma(k) \in k + \Theta(\log k)$ and γ -DSP in NP-c, then NP \subseteq DTIME $(n^{O(\log(n))})$.

An Abstraction Hierarchy for Unbounded-arity Relations

Our Approach

	id	author	citkey	
1	1234	Anderson, Richard and Ernst W. Mayr and Manfred Warmuth	Anderson-Mayr-Warmuth/88	(1
2	1235	Anderson, Richard J. and Ernst W. Mayr and Manfred K. Warmuth	Anderson-Mayr-Warmuth/89	(1
3	1236	Anderson, Richard J. and Ernst W. Mayr and Manfred K. Warmuth	Anderson-Mayr-Warmuth/90	Ρ
4	1237	Anderson, R. and E.W. Mayr	Anderson-Mayr/84	(1
5	Data	Anderson, R. and E. W. Mayr Anderson, Richard at EnsErABIB - bibliogra	april data base	()
~		Priderbon, riteriara and Ernst hay	Anderson-Mayr/87a	A
7	4157	Bischof, Stefan and Ernst W. Mayr	Bischof-Mayr/98	()
8	4158	Bischof, Stefan and Ernst (36,000 authors; 7	(U.UUU papers)	
9	2281	Broder, Andrei Z. and Ernst W. Mayr	Broder-Mayr/88	0
10	10273	D⊡rre, Karl and Heinrich Christian Mayr	Duerre-Mayr/??	
11	СШ	stering: espectral analysis	Gauba-Mayr-Lockemann/85	
12 13		Gaube W, and H.C. Mayr and P.C. Lockemann Sterling and E. MSpectral analysis (Helmbold, D. and E. Mayr	Uelnulatavi/86	
	16244	Helmbold, D. and E. Mayr Helmbold, David and Ernst W. Mayr Helmbold, David and rn CHMCHMCANS Clusterin Helmbold, D Row: 14 Column: 2 M	Heimbold Move/87a	
14 15	16245		Almbold Move/87b	Ð
15	16240		Salmbold-Mayr/90	f
17	16247	Helmbold, David and Ernst Mayr	Helmbold-Mayr/??	Ż
18				2
19	Lave	Ers Volker and Ernst V Maxilding super ve	ertices / edges	- N
20	16732	Hochschild P.H. and F.W. Mayr and A.R. Siegel	Hochschild-Mayr-Siegel/83	E
21	16733	Hochschild, P.H. and E.W. Mayr and A.R. Siegel Hochschild, P.P. and E.WOICATEO ITOM Clus	ters / graphs on	ĺ (
22	10/34	HILLING TILLD. PETER AND ETTIN WAVE AND AIAN SIEDEL	Hochschild-Mayr-Siegel/??	Č
23	19935	King, R.M. and E.W. Maya lower layer	King-Mayr/85	N
24	19936	King, R.M. and E.W. Mayr		V
25	20161	Kleine B⊡ning, Hans and Theodor Lettmann and Ernst W. Mayr	Kleine_Buening-Lettmann-Mayr/89	(
26	20442	Kuhler, Rolf and Ernantion of cluster	Mar-Mayr/78	E
27	20443	King, R.M. and E.W. Mayr Kleine Boning, Hans and Theodor Lettmann and Ernst W. Mayr Kohler, Rolf and Ernst Mayr Kohler, Rolf and Ernst Mayr	Koewer-Mayr/81	E
	20584	Koppenhagen, Ulla and Ernst W. Mayr	Koppenhagen-Mayr/95	(
28		Kuscha, K. and D. Kutzlar and H. Mark	Kusche-Kutzler-Mayr/89	F
28 29	21322	Kusche, K. and B. Kutzler and H. Mayr	INUSCHEER NUCLIEF EM AVI 7 0 5	1.1

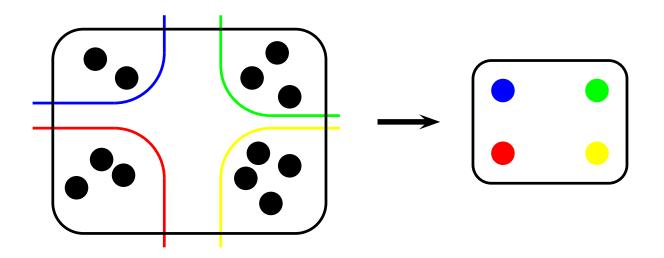

Clustering with Spectral Partitioning

Idea:

- using SVD for low-rank approximation of (weighted) adjacency matrix
 - transformation of n-dimensional data into a low-dimensional space

Advantage: • fast approximation algorithms

 spectral partitioning and ratio-cut partitioning are correlated



հոլսո

Input: Hyper graph G, clustering C*Output*: Hyper graph G' at the next higher level

- vertices: clusters
- hyperedges: shrink old hyperedges

Cluster 232 on level 1:

- 871 Mayr, E. W.
- 2564 Bischof, S.
- 6559 Heun, V.
- 7331 Lettmann, T.
- 7429 Koppenhagen, U.

```
Cluster 780 on level 1:

1110 Suen, S.

1216 Assaf, S.

1217 Upfal, E.

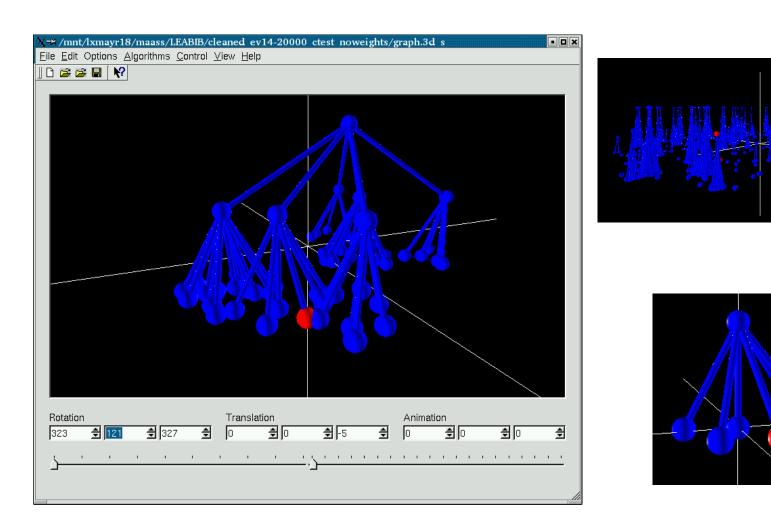
1304 Feige, U.

1348 Shamir, E.

1393 Broder, A. Z.

1394 Karlin, A. R.

3101 Frieze, A. M.
```



חחטחר

Cluster	191 on 1	level 2:
Cluster	232 or	n level 1
Cluster	240 or	n level 1
Cluster	560 or	n level 1
Cluster	561 or	n level 1
Cluster	648 or	n level 1
Cluster	780 or	n level 1

Visualization

าปกก

Input Data

- difficulties: → noisy data
 → small data set
- tasks: \rightarrow data cleaning
 - \rightarrow incorporation of further data

Modeling of hyper graphs

- representation of hyperedges
- usage of weights
- graph abstraction

Dynamic hierarchies

- modification of hierarchy
 - → union/split of clusters
 - \rightarrow insertion/deletion of levels
- incorporation of further data
 - → insertion/deletion of vertices/edges
 - → modification of weight functions
- parametric clusters/hierarchies
 - → transformation/weights of hyperedges
 - \rightarrow graph generation on each level