

DFG — Schwerpunktprogramm Nr. 1126

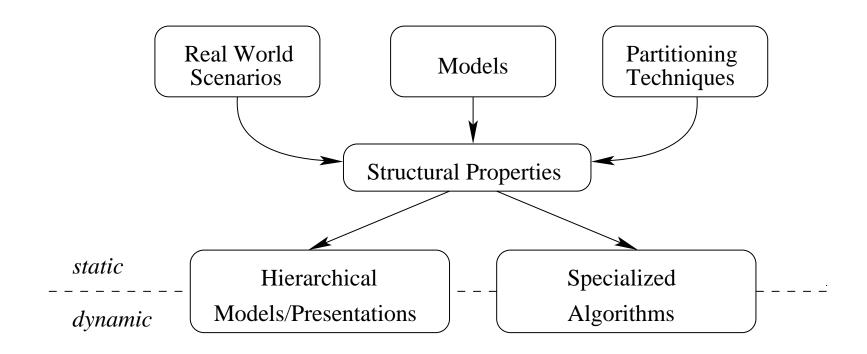
Density based clustering in dynamic and abstract representations of large networks

Klaus Holzapfel

Lehrstuhl für Effiziente Algorithmen

Fakultät für Informatik an der Technische Universität München

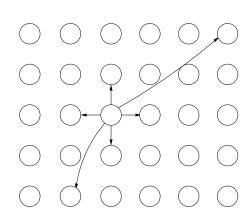
Jahrestreffen 22. – 24. Juli 2002 (Konstanz)



Semi-structured Data - Models & Algorithms

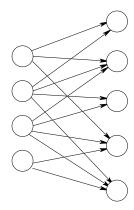
Kleinberg [STOC 00]

Transportation Problem (only local information) Algorithm: $O(log^2n)$



Kleinberg [J. ACM 99]

Hubs and Authorities



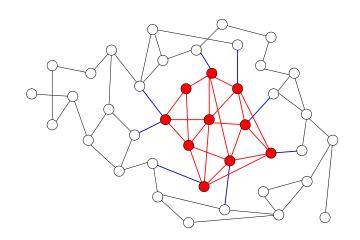
Achlioptas, Fiat, Karlin, McSherry [FOCS 01]

Web Search via Hub Synthesis

Practical Usage of Abstracting Data

- VLSI Design
 - placement
 - routing and wiring
- Transportation Problems
 - telephone network
 - road network
- Clustering
 - 3-D data representation (simulators)
 - speech recognition
 - web communities

How to cluster data?



- many internal edges (density)
- few external edges (cut)
- different short paths (connectivity)

Problem: DENSE k-SUBGRAPH-PROBLEM

Input: Graph $G, k \in \mathbb{N}$

Output: Subgraph G' having maximum number of edges

w.r.t. all subgraphs of size k

- (variable) decision problem \mathcal{NP} -complete
- $\triangleright \mathcal{O}(n^{\frac{1}{3}-\epsilon})$ -approximation [Feige, Kortsarz, Peleg, 2001]

γ-Dense Subgraph Problem

 γ -Dense Subgraph-Problem (γ -DSP) Problem:

Graph $G, k \in \mathbb{N}$ Input:

Does there exist a subgraph G' of size k having Output:

at least $\gamma(k)$ edges

•
$$\gamma(k) = \binom{k}{2}$$
 $\gamma ext{-}\mathsf{DSP} = \mathsf{CLIQUE} \in \mathcal{NP} ext{-}\mathsf{c}$

•
$$\gamma(k) = 0$$
 γ -DSP $\in \mathcal{P}$

Where is the threshold?

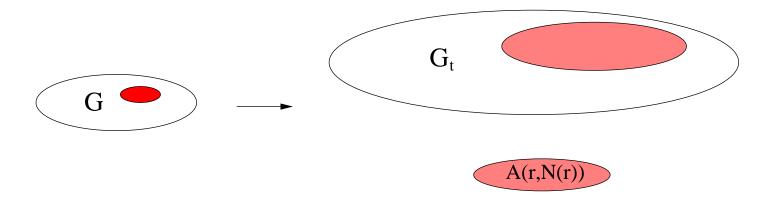
Results - Overview

	\mathcal{P}	$\mathcal{NP} ext{-c}$
[Asahiro et.al. 2002]	$\gamma(k) = k$	$\gamma(k) = \Theta(k^{1+\epsilon})$
[Feige, Seltser 1997]		$\gamma(k) = k + k^{\epsilon}$
[H et.al. 2002]	$\gamma(k) = k + O(1)$	$\gamma(k) = k + \Theta(k^{\epsilon})$

$\mathcal{NP} ext{-completeness}$

Theorem. The γ -DSP is \mathcal{NP} -complete for $\gamma(k)=k+\Theta(k^{\epsilon})$ (γ must be be computable in polynomial time; $0<\epsilon<2$).

Proof sketch: • CLIQUE $_{\frac{1}{2}} \leq^p_m \gamma$ -DSP



$$N(r) = \gamma(k + t\binom{k}{2} + r) - (t+1)\binom{k}{2}$$

$$r = 30D^{2}k$$

$$t = \lceil (6D)^{3\epsilon^{-1}} k^{2(1-\epsilon)\epsilon^{-1}} \rceil$$

Polynomial Time Algorithm

Polynomial Time Algorithm

consider: $\gamma(k) = k + \mathcal{O}(1)$

definition: excess(G) = |E(G)| - |V(G)|

Problem: EXCESS-c-SUBGRAPH

Input: Graph $G, k \in \mathbb{N}$

Output: Does G contain a subgraph G' of size k and

 $\operatorname{excess}(G') = c$?

Theorem. Given G and $k \in \mathbb{N}$, the problem Excess-c-Subgraph can be solved in time $\mathcal{O}(|V|^{2c+3})$.

$$\begin{array}{|c|c|c|c|c|}\hline G_1 & G_2 & \cdots & G_j & G_{j+1} & \cdots & G_{r-1} & G_r \\ \hline excess >= 0 & excess = -1 & \hline \end{array}$$

- (1) negative components are necessary
- (2) positive components are sufficient
 - \rightarrow compute $A_i[...]$ and use dynamic programming

# of vertices	1	2	3	 5	• • •	$ V(G_i) $
max. excess	-1	-1	0	 2		*

$$\star = \min(\operatorname{excess}(G_i), c+1)$$

Proof — How to find $A_i[x]$

$$\sum_{v \in V(G_{\min})} \deg_{G_{\min}}(v) = 2||E(G_{\min})|| = 2(||V(G_{\min})|| + c)$$

In G_{\min} there is no vertex with degree less than 2, thus:

$$\sum_{v \in V(G_{\min})} (\deg_{G_{\min}}(v) - 2) = 2(\|V(G_{\min})\| + c) - 2\|V(G_{\min})\| = 2c$$

Therefore, the number of vertices with degree > 3 is at most 2c, i.e. $\mathcal{O}(n^{2c})$ possible combinations.

- ⇒ enumeration possible in polynomial time
- Each such combination can be tested using parallel BFS.

Calculation of A_i can be done in time $\mathcal{O}(n^{2c+3})$.

Complexity Results

Theorem. Let $\gamma:\mathbb{N}\to\mathbb{N}$ be a function that is computable in polynomial time:

- 1. If $\gamma(k) = k + \mathcal{O}(1)$ then γ -DSP is in \mathcal{P} .
- 2. If $\gamma(k)=k+\Theta(k^{\epsilon})$, for some rational number $0<\epsilon<2$, then γ -DSP is \mathcal{NP} -complete.

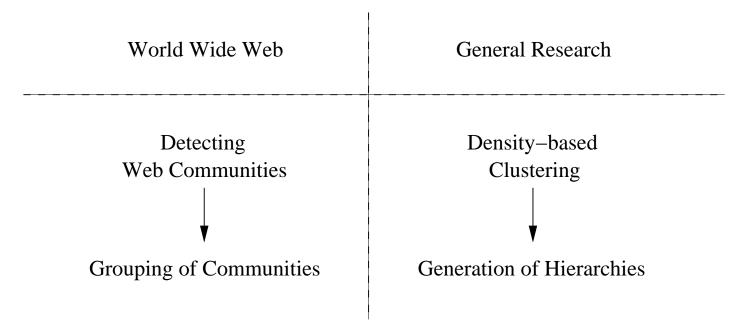
How to measure density in directed graphs?

directed graphs [Kannan, Vinay, 1999]:

$$\delta(G) = \frac{2|E(G)|}{|V(G)|} \qquad \Rightarrow \qquad \delta'(G) = \max_{S,T \subseteq V(G)} \left(\frac{E(S,T)}{\sqrt{|S||T|}}\right)$$

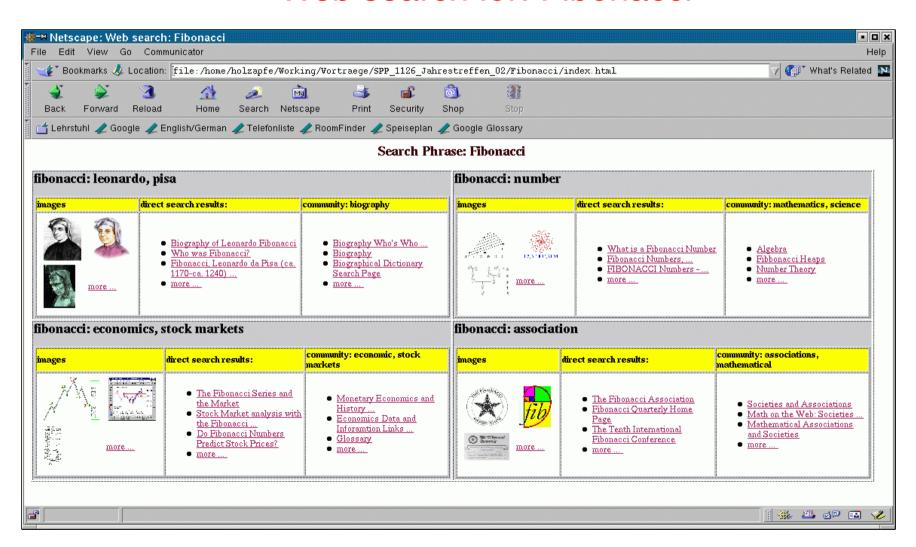
- evaluating existence of good hubs and authorities
- \bullet S and T not disjoint
- how to proceed when searching for dense bipartite graphs?

Where to go? What to do next?



- Trawling the Web for Emerging Cyber Communities
 [Kumar, Raghavan, Rajagopalan, Tomkins, 1999] WWW8
- An approach to build a cyber-community hierarchy
 [Krishan Reddy, Kitsuregawa, 2002] Workshop on Web Analytics

Web search for: Fibonacci



Algorithmic — How good can problems be approximated within different types of hierarchies and graph classes?

- shortest paths, local vs. global
- distance and connectivity
- searching and similarity

Dynamic aspects in hierarchies — Real world systems are not static; objects and relationships vary over time.

- recognition of emerging / dissolving clusters
- re-calibration of cluster properties (weight, size, ...)
- local vs. global recalculation