Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	000000	000000000	0

Average-Case Analysis of Approximate Trie Search

Moritz G. Maaß

maass@in.tum.de Institut für Informatik Technische Universität München

15th CPM, July 2004

(日) (圖) (E) (E) (E)

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary	
•	00000 000 000	0	0 00 000	0 000000	000000000	0	

Introduction

- Definitions
- Algorithms
- Probabilistic Model
- 2 Related Work
- 3 Main Results
 - LS Algorithm
 - TS Algorithm
 - Applications
- 4 Basic Analysis
 - LS Algorithm
 - TS Algorithm
- 5 Asymptotic Analysis
- 6 Summary

Moritz G. Maaß: Average-Case Analysis of Approximate Trie Search

<ロト <回ト < 回ト < 回ト = 三

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	••••• ••• •••	0	0 00 000	000000	000000000	0

Basic Definitions

- Let Σ be an alphabet of fixed size σ. Σ* the set of all (finite) strings over Σ.
- For the string $u = u_1 \cdots u_m$ we call |u| := m its length, $u_1 \cdots u_i$ a prefix, $u_j \cdots u_m$ a suffix, and $u_k \cdots u_l$ a substring.
- $d: \sigma \times \sigma \to \{0, 1\}$ be an error function and let $\hat{d}: \sigma^* \times \sigma^* \to \mathbb{N}$ be its extension to strings, such that

$$\hat{d}(u,v) = \begin{cases} \infty & \text{, if } |u| \neq |v|, \\ \sum_{i=1}^{|u|} d(u_i,v_i) & \text{, otherwise.} \end{cases}$$

Moritz G. Maaß: Average-Case Analysis of Approximate Trie Search

◆□> ◆□> ◆豆> ◆豆> □豆

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	○●○○○ ○○○ ○○○	0	0 00 000	000000	000000000	0

Examples of Error Functions

• Hamming Distance.

$$d(x,y) = egin{cases} 1 & ext{, if } x
eq y, \ 0 & ext{, otherwise.} \end{cases}$$

• Number of don't-cares. Let $\mathsf{c} \in \Sigma$ be a special don't-care symbol.

$$d(x,y) = egin{cases} 1 & ext{, if } x = ext{c or } y = ext{c}, \\ 0 & ext{, otherwise.} \end{cases}$$

• Hamming Distance with don't-cares.

$$d(x,y) = \begin{cases} 1 & \text{, if } x \neq y \text{ and neither } x = \texttt{c nor } y = \texttt{c}, \\ 0 & \text{, otherwise.} \end{cases}$$

Moritz G. Maaß: Average-Case Analysis of Approximate Trie Search

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Outline Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
	0	0 00 000	0 000000	000000000	0

Examples of Error Functions (2)

• Arithmetic Distance. Let $\Sigma = [0, \dots, \sigma - 1]$ be ordered and let $i < (\sigma - 1)/2$ be a constant. Define $a(x, y) = \max(x, y) - \min(x, y)$.

$$d(x,y) = \begin{cases} 1 & \text{, if } \min\left(a(x,y), \sigma - a(x,y)\right) > i, \\ 0 & \text{, otherwise.} \end{cases}$$

For example, let Σ be the discretization of all angles, i.e. $\Sigma = \{[0, \frac{1}{12}\pi), \dots, [\frac{23}{12}\pi, 2\pi)\}$, then d(x, y) measures whether two angles are not too far apart.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	000000	000000000	0
D. C. M.						

Problem Definition

For a given alphabet, a given error function d, and a given threshold D, we define the following two-phase-problem

- Input: 1 A database of strings
 S = {X⁽¹⁾,...,X⁽ⁿ⁾} ⊂ Σ* (initial phase).
 2 One (or more) query strings P ∈ Σ* of length m
 - 2 One (or more) query strings $P \in \Sigma^*$ of length m (query phase).
- Output: **1** Some data structure DS for the string database.
 - Using DS, search for each P. This may answer one of the one of the query types: Occurrence, Longest Prefix, Count, All Prefixes.

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	0000 000 000	0	0 00 000	000000	000000000	0

Query Types

- **Occurrence**: Answer YES, if there exists a prefix $X^{(j)}[1,m]$ of $X^{(j)} \in S$ with $\hat{d}(X^{(j)}[1,m], P) \leq D$, and NO otherwise.
- 2 Longest Prefix: Answer j, l, if the prefix X^(j)[1, l] of X^(j) ∈ S satisfies with $\hat{d}(X^{(j)}[1, l], P[1, l]) ≤ D$ and there is no i with a longer matching prefix $\hat{d}(X^{(i)}[1, l+1], P[1, l+1]) ≤ D$.
- **3** Count: Answer $k = \left| \left\{ j \mid \hat{d}(X^{(j)}[1,m],P) \leq D \right\} \right|.$
- **3** All Prefixes: Answer with the set of all (maximal) matches

$$\left\{(j,l_j) \mid \hat{d}(X^{(j)}[1,l_j],P[1,l_j]) \leq D \text{ and } d(X^{(j)}_{l_j+1},P_{l_j+1}) > 0\right\}.$$

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary			
0	00000 000 000	0	0 00 000	0 000000	000000000	0			
Algorithm	Algorithms								

Overview

- Average-Case behavior of "Linear Search" (LS), which simply compares each query pattern with every database strings.
- Average-Case behavior of "Trie Search" (TS), which builds a trie from all database strings and uses the trie to speed up the pattern search.
- Asymptotically, the worst case for both algorithms for both algorithms is the same.
- There is a threshold in the number of errors, where TS has the same asymptotic running time.

(四) 《四》《四》《曰》《曰》

< ロ > < 回 > < 回 > < 回 > < 回 > < 三

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 000000	000000000	0

Algorithms

(日) (同) (日) (日)

3

Outline O	Introduction	Related Work O	Main Results 0 00 000	Basic Analysis 0 000000	Asymptotic Analysis	Summary O			
Darkakilaria Madal									

Probabilistic Model

- All strings are generated at random by a memoryless source.
- For the a random string $u = u_1 \cdots u_n$ and alphabet $\Sigma = \{s_1, \ldots, s_\sigma\}$

$$\Pr\left\{u_j = s_i\right\} = \frac{1}{\sigma}.$$

- We assume that all strings are infinite.
- Random variables for the number of character comparisons
 - L_n^D for the LS algorithm and
 - T_n^D for the TS algorithm.

Outline 0	Introduction	Related Work O	Main Results 0 00 000	Basic Analysis 0 000000	Asymptotic Analysis	Summary O			
Probabilistic Model									

Error Probability

The error probability of two random characters under the error function d is given by

$$p = \frac{\sum_{i=1}^{\sigma} \sum_{j=1}^{\sigma} d(s_i, s_j)}{\sigma^2}.$$

We define q := 1 - p.

- Hamming distance: $p = 1 \frac{1}{\sigma}$, $q = \frac{1}{\sigma}$
- Number of don't-cares: $p = \frac{2\sigma 1}{\sigma^2}$, $q = 1 \frac{2\sigma 1}{\sigma^2}$
- Hamming distance with don't cares: $p = 1 \frac{3\sigma 2}{\sigma^2}$, $q = \frac{3\sigma 2}{\sigma^2}$

• Arithmetic distance: $p = 1 - \frac{2i+1}{\sigma}$, $q = \frac{2i+1}{\sigma}$

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary			
0	00000 000 000	0	0 00 000	0 000000	000000000	0			
Probabilistic Model									

Expected Results

- The expected depth of a trie is $\log_{\sigma} n$ (Pittel 1986, Szpankowski 1988).
- There are at most n nodes with depth below $\log_{\sigma} n$ in the trie.
- We expect a speed up of TS over LS when the expected number of comparisons for each string is smaller than $\log_{\sigma} n$.

(日) (同) (日) (日)

э

Outline Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0 00000 000 000	•	0 00 000	0 000000	000000000	0

Related Work (incomplete)

- k-d-tries: Flajolet and Puech 1986
- Average behavior of tries and suffix trees: Apostolico and Szpankowski 1992
- Regular Expressions: Baeza-Yates and Gonnet 1996
- All-Against-All matching: Baeza-Yates and Gonnet 1999
- Hybrid Indexing Method: Navarro and Baeza-Yates 2000
- Tree/Trie Traversal algorithms: Jokinen and Ukkonen 1991, Ukkonen 1993, Cobbs 1995, Schulz and Mihov 2002

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	• 00 000	000000	000000000	0

Average Complexity of the LS algorithm

$$\mathbf{E}\left[L_{n}^{D}\right] = \frac{(D+1)n}{p}$$

We can even prove convergence:

$$\lim_{n \to \infty} \frac{L_n^D}{n(D+1)} = \frac{1}{p} \qquad (\text{pr.})$$
$$\lim_{n \to \infty} \frac{L_n^D}{n(D+1)} = \frac{1}{p} \qquad (\text{a.s.})$$

Moritz G. Maaß: Average-Case Analysis of Approximate Trie Search

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣○

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 • 0 0 0 0	0 000000	000000000	0

Average Complexity of the TS algorithm

$$\mathbf{E}\left[T_{n}^{D}\right] = \begin{cases} O\left(\left(\log n\right)^{D+1}\right), \\ O\left(\left(\log_{\sigma} n\right)^{D} n^{\log_{\sigma} q+1}\right), \\ O\left(1\right), \\ o(n), \\ \Omega\left(n\log_{\sigma} n\right), \end{cases}$$

for D = O(1) and $q = \sigma^{-1}$ for D = O(1) and $q > \sigma^{-1}$ for D = O(1) and $q < \sigma^{-1}$ for D + 1 $for <math>D + 1 > p \log_{\sigma} n$.

(日本) (四本) (日本) (日本)

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary	
0	00000 000 000	0		000000	000000000	0	
TS Algorit	thm						

Exact Average Complexity of the TS algorithm

For Hamming Distance we have

$$\mathbf{E}\left[T_n^D\right] = \frac{\sigma(\sigma-1)^D}{(D+1)!} \left(\log_{\sigma} n\right)^{D+1} + O\left(\left(\log n\right)^D\right),$$

otherwise we have

$$\mathbf{E}\left[T_n^D\right] = \frac{(1-q)^D}{D!q^{D+1}} \left(\log_\sigma n\right)^D n^{\log_\sigma q+1} C(q,\sigma,n) + O\left(\left(\log n\right)^{D-1} n^{\log_\sigma q+1}\right),$$

where $C(q, \sigma, n) = \sum_{k \in \mathbb{Z}} n^{-\frac{2\pi i k}{\ln \sigma}} \Gamma\left(-\log_{\sigma} q - 1 + \frac{2\pi i k}{\ln \sigma}\right) = O(1)$ is a small, bounded fluctuating function.

・ロト ・四ト ・ヨト ・ヨト ・ 王

Outline 0	Introduction 00000 000 000	Related Work O	Main Results 0 00 00	Basic Analysis 0 000000	Asymptotic Analysis	Summary O	
Applicatio	ins						

Applications

For a D = O(1) error search with an alphabet of size 4 we get • Hamming Distance with $p = \frac{3}{4}$, $q = \frac{1}{4}$:

$$\frac{4 \cdot 3^D}{(D+1)!} \left(\log_4 n \right)^{D+1} + O\left((\ln n)^D \right)$$

• Number of don't-cares with $p = \frac{7}{16}$, $q = \frac{9}{16}$:

$$O\left(\left(\ln n\right)^{D} n^{\log_{4} \frac{9}{16}+1}\right) = O\left(\left(\ln n\right)^{D} n^{0.59}\right)$$

• Hamming Distance with don't-cares with $p = \frac{3}{8}$, $q = \frac{5}{8}$:

$$O\left(\left(\ln n\right)^{D} n^{\log_{4} \frac{5}{8}+1}\right) = O\left(\left(\ln n\right)^{D} n^{0.66}\right)$$

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0		0 000000	000000000	0
Applicatio	ns					

For the arithmetic distance the case D = 0 for various i is interesting. Let $\sigma = 24$, then $p = 1 - \frac{2i+1}{24}$, $q = \frac{2i+1}{24}$. In general

$$O\left(n^{\log_{24}\frac{2i+1}{24}+1}\right) = O\left(n^{\log_{24}(2i+1)}\right).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 2

For

•
$$i = 1$$
 we get $O(n^{0.35})$,
• $i = 2$ we get $O(n^{0.51})$
• $i = 3$ we get $O(n^{0.61})$

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 00•	000000	000000000	0

Applications

Hamming Distance in $\Sigma = \{A, C, G, T, N\}$ with don't care symbol N has $p = \frac{12}{25}$, $q = \frac{13}{25}$:

$$\frac{25}{13} \frac{\left(\frac{12}{13}\right)^D}{D!} (\log_5 n)^D n^{\log_5 \frac{13}{5}} C\left(\frac{13}{25}, 5, n\right) + O\left((\log n)^{D-1} n^{\log_5 \frac{13}{5}}\right)$$

$$\approx 1.92 \frac{(0.4)^D}{D!} (\log_2 n)^D n^{0.59} (3.675 \pm 0.005) + O\left((\log n)^{D-1} n^{0.59}\right)$$

Average-Case Analysis of Approximate Trie Search

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary	
0	00000 000 000	0	0 00 000	000000	000000000	0	
LS Algorit	hm						

Average Complexity of the LS algorithm

The probability of k comparisons is

$$\Pr\left\{L_{n}^{D}=k\right\}=\sum_{i_{1}+\ldots+i_{n}=k}\prod_{j=1}^{n}\binom{i_{j}-1}{D}p^{D+1}q^{i_{j}-D-1}.$$

From it we can derive the probability generating function

$$g_{L_n^D}(z) = \mathbf{E}\left[z^{L_n^D}\right] = \sum_{k=0}^{\infty} \Pr\left\{L_n^D = k\right\} z^k = \left(\frac{pz}{1-qz}\right)^{n(D+1)},$$

・ロト ・四ト ・ヨト ・ヨト ・ 王

which yields the expected value $\mathbf{E}\left[L_n^D\right] = \frac{D+1}{p}n.$

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 ●00000	000000000	0

Average Complexity of the TS algorithm

- Count the number of nodes visited by the search process (=number of comparisons+1).
- The expected number of nodes is computed recursively, summing over all subtrees and distributions of strings.

(日本) (四本) (日本) (日本)

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 00000	000000000	0

Average Complexity of the TS algorithm

Moritz G. Maaß: Average-Case Analysis of Approximate Trie Search

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 000000	000000000	0

Average Complexity of the TS algorithm (2)

- Boundary conditions: $\mathbf{E} \left[T_n^{-1} \right] = 1$ (last mismatch) and $\mathbf{E} \left[T_0^D \right] = 0$ (no strings).
- Recursion:

$$\mathbf{E}\left[T_{n}^{D}\right] = 1 + \sum_{i_{1}+\dots+i_{\sigma}=n} \binom{n}{i_{1},\dots,i_{\sigma}} \sigma^{-n} \left(\sum_{j=1}^{\sigma} p \mathbf{E}\left[T_{i_{j}}^{D-1}\right] + \sum_{j=1}^{\sigma} q \mathbf{E}\left[T_{i_{j}}^{D}\right]\right)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣・

• For n = 1 we have $\mathbf{E}\left[T_1^D\right] = 1 + \frac{D+1}{p}$.

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 000000	000000000	0

Average Complexity of the TS algorithm (3)

Compute the EGF $t^D(z)$, multiply by e^{-z} , define $\tilde{t}^D(z) = t^D(z)e^{-z}$, compare coefficients and find that for n > 1

$$y_n^D = \frac{(-1)^{n-1}}{1 - \sigma^{1-n}q} + \frac{\sigma^{1-n}p}{1 - \sigma^{1-n}q}y_n^{D-1}$$

with Boundary condition $y_n^{-1}=(-1)^{n-1}$ for n>0 and $y_1^D=1+(D+1)/p,\ y_0^D=0.$ We get

$$y_n^D = \frac{(-1)^n \sigma^{1-n}}{1 - \sigma^{1-n}} \left(\frac{\sigma^{1-n}p}{1 - \sigma^{1-n}q}\right)^{D+1} - \frac{(-1)^n}{1 - \sigma^{1-n}}.$$

Moritz G. Maaß: Average-Case Analysis of Approximate Trie Search

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 000000	000000000	0

Average Complexity of the TS algorithm (4)

We translate back to

$$\mathbf{E}\left[T_{n}^{D}\right] = n\left(1 + \frac{D+1}{p}\right) + \underbrace{\sum_{k=2}^{n} \binom{n}{k} \frac{(-1)^{k}}{\sigma^{k-1} - 1} \left(\frac{p\sigma^{1-k}}{1 - q\sigma^{1-k}}\right)^{D+1}}_{\mathcal{S}_{n}^{(D)}} - \underbrace{\sum_{k=2}^{n} \binom{n}{k} \frac{(-1)^{k}}{1 - \sigma^{1-k}}}_{A_{n}}.$$

Moritz G. Maaß: Average-Case Analysis of Approximate Trie Search

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣○

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 00000	000000000	0

Average Compression Number

A similar derivation to the above shows that the sum ${\cal A}_n$ is the solution to

$$A_n = n - 1 + \sum_{i_1 + \dots + i_\sigma = n} \binom{n}{i_1, \dots, i_\sigma} \sigma^{-n} \sum_{j=1}^\sigma A_{i_j},$$

which we call the average "compression number".

Lemma

The asymptotic behavior of A_n is

$$A_{n} = n \log_{\sigma} n + n \left(\frac{1}{2} - \frac{1 - \gamma}{\ln \sigma} + \frac{\sum_{k \in \mathbb{Z} \setminus \{0\}} n^{-\frac{2\pi i k}{\ln \sigma}} \Gamma\left(-1 + \frac{2\pi i k}{\ln \sigma}\right)}{\ln \sigma} \right) + O\left(1\right).$$

Moritz G. Maaß: Average-Case Analysis of Approximate Trie Search

(日)、

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	000000	•00000000	0

Rice's Formula

Let f(z) be an analytic continuation of $f(k) = f_k$ that contains the half line $[m, \infty)$. Then

$$\sum_{k=m}^{n} (-1)^k \binom{n}{k} f_k = \frac{(-1)^n}{2\pi i} \int_{\mathcal{C}} f(z) \frac{n!}{z(z-1)\cdots(z-n)} dz,$$

where C is a positively oriented curve that encircles [m, n] and does not include any of the integers $0, 1, \ldots, m-1$ or other singularities of f(z). (\Rightarrow Nörlund 1924)

・ロト ・四ト ・ヨト ・ヨト ・ 王

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 000000	00000000	0

We apply Rice's formula, let ${\mathcal C}$ grow to a large half-circle and find for $1<\xi<2$

$$\mathfrak{S}_{n}^{(D)} = \frac{1}{2\pi i} \int_{-\xi - i\infty}^{-\xi + i\infty} \frac{1}{\sigma^{-1-z} - 1} \left(\frac{p}{\sigma^{-1-z} - q}\right)^{D+1} \mathsf{B}(n+1, z) dz + O(1) \,.$$

Since

$$\pi |z| \left| \frac{1}{\sigma^{-1-z} - 1} \left(\frac{p}{\sigma^{-1-z} - q} \right)^{D+1} \mathsf{B}(n+1, z) \right| \xrightarrow[|z| \to \infty]{} 0$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣。

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	000000	00000000	0

The integral needs to be simplified further by approximation of the Beta function:

$$\mathsf{B}(n+1,z) = \frac{\Gamma(n+1)\Gamma(z)}{\Gamma(n+1+z)} = \Gamma(z)n^{-z} + O\left(n^{-z-1}|z|^2\right).$$

This approximation is uniformly valid, for $(|z|^2) = o(n)$ (Tricomi and Erdélyi 1951, Fields 1970).

For x<0 and any strictly positive function $f(n)\in\omega\left(1\right)$ we have

$$\int_{f(n)\ln n}^{\infty} |\mathsf{B}(n, x + \imath y)| \, dy = O\left(n^{-f(n)\left(\frac{\pi}{4} - \epsilon\right) - x}\right).$$

For constant $x \not\in \{0,-1,-2,\ldots\}$ we have

$$\int_{-\infty}^{\infty} |\mathsf{B}(n, x + \imath y)| \, dy = O\left(n^{-x}\right).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	000000	000000000	0

We are left with

$$\mathcal{I}_{\xi,n}^{(D)} := \frac{1}{2\pi \imath} \int_{-\xi - \imath \infty}^{-\xi + \imath \infty} \frac{1}{\sigma^{-1-z} - 1} \left(\frac{p}{\sigma^{-z-1} - q} \right)^{D+1} \Gamma(z) n^{-z} dz,$$

which we can evaluate by the residues to the right of $\Re(z) = -\xi$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣。

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 000000	000000000	0

Residues in the complex plane

ж

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	000000	000000000	0

The residues at $\Re(z) = -1$, A_n , and the starting terms cancel out.

$$-\left(\sum_{k\in\mathbb{Z}}\operatorname{res}\left[g(z), z=-1+\frac{2\pi\imath k}{\ln\sigma}\right]\right)+n\left(1+\frac{D+1}{p}\right)-A_n=O\left(1\right).$$

Moritz G. Maaß: Average-Case Analysis of Approximate Trie Search

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ · 볼 · · · ○ ▲

E1

Outline Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0 00000 000 000	0	0 00 000	0 000000	0000000000	0

Highest Order Term

We consider D,q,p,σ constant, the residues at z=0 and at $\Re(z)=-\log_\sigma q-1$ yield a multi-index sum of which we look at the term of highest order.

If $q = \sigma^{-1}$, this term is

$$-\frac{\sigma(\sigma-1)^D}{(D+1)!} \left(\log_{\sigma} n\right)^{D+1},$$

otherwise, this term is

$$-\frac{(1-q)^D}{D!q^{D+1}}\left(\log_{\sigma}n\right)^D n^{\log_{\sigma}q+1} \sum_{k\in\mathbb{Z}} n^{-\frac{2\pi\imath k}{\ln\sigma}} \Gamma\left(-\log_{\sigma}q - 1 + \frac{2\pi\imath k}{\ln\sigma}\right).$$

Note that
$$\left|\sum_{k\in\mathbb{Z}}n^{-\frac{2\pi\imath k}{\ln\sigma}}\gamma_{l-i}^{\left(-\log_{\sigma}q-1+\frac{2\pi\imath k}{\ln\sigma}\right)}\right|=O\left(1\right).$$

Moritz G. Maaß:

Average-Case Analysis of Approximate Trie Search

◆□> ◆圖> ◆臣> ◆臣> □臣

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary	
0	00000 000 000	0	0 00 000	0 000000	0000000000	0	

Assume $D + 1 = c \log_{\sigma} n$, we can bound the integral by

$$\mathcal{I}_{\xi,n}^{(D)} \leq \frac{C}{\sigma^{\xi-1}-1} n^{c \log_{\sigma} \left(\frac{p}{\sigma^{\xi-1}-q}\right) + \xi}.$$

Moritz G. Maaß: Average-Case Analysis of Approximate Trie Search 10, 10, 12, 12, 2, 2 Oace

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 000000	0000000000	0

Residues in the complex plane (2)

Moritz G. Maaß: Average-Case Analysis of Approximate Trie Search

3

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 000000	00000000	0

Sublinear behavior for c < p

If the exponent $\mathcal{E}_{c,q,\xi}$ has a minimum $\xi^* < 1$, we are either left with a term $O(n^{\epsilon})$ or we evaluate the remaining residues. This is the case if c < p. For $\xi^* < 0$ we have an additional residue for the Gamma function at z = 0, but it is o(n) for $D + 1 = c \log_{\sigma} n$.

◆□> ◆□> ◆注> ◆注> □注:

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	000000	000000000	•

Outlook

- Search bounded in multiple parameters.
- For (very) small D the method might be used to estimate the complexity for Edit Distance.
- Extension to indices with look-up time linear in the size of the pattern. The average size should behave similar (i.e., O(npolylog(n))).

Outline	Introduction	Related Work	Main Results	Basic Analysis	Asymptotic Analysis	Summary
0	00000 000 000	0	0 00 000	0 000000	000000000	0

Thank you!

Average-Case Analysis of Approximate Trie Search

Moritz G. Maaß

maass@in.tum.de Institut für Informatik Technische Universität München

15th CPM, July 2004

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣