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Definitions

Basic Definitions

Let Σ be an alphabet of fixed size σ. Σ∗ the set of all (finite)
strings over Σ.

For the string u = u1 · · ·um we call |u| := m its length,
u1 · · ·ui a prefix, uj · · ·um a suffix, and uk · · ·ul a substring.

d : σ × σ → {0, 1} be an error function and let
d̂ : σ∗ × σ∗ → N be its extension to strings, such that

d̂(u, v) =

{
∞ , if |u| 6= |v|,∑|u|

i=1 d(ui, vi) , otherwise.
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Definitions

Examples of Error Functions

Hamming Distance.

d(x, y) =

{
1 , if x 6= y,

0 , otherwise.

Number of don’t-cares. Let c ∈ Σ be a special don’t-care
symbol.

d(x, y) =

{
1 , if x = c or y = c,

0 , otherwise.

Hamming Distance with don’t-cares.

d(x, y) =

{
1 , if x 6= y and neither x = c nor y = c,

0 , otherwise.
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Definitions

Examples of Error Functions (2)

Arithmetic Distance. Let Σ = [0, . . . , σ − 1] be ordered and
let i < (σ − 1)/2 be a constant. Define
a(x, y) = max(x, y)−min(x, y).

d(x, y) =

{
1 , if min (a(x, y), σ − a(x, y)) > i,

0 , otherwise.

For example, let Σ be the discretization of all angles, i.e.
Σ = {[0, 1

12π), . . . , [23
12π, 2π)}, then d(x, y) measures whether

two angles are not too far apart.
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Definitions

Problem Definition

For a given alphabet, a given error function d, and a given
threshold D, we define the following two-phase-problem

Input: 1 A database of strings
S =

{
X(1), . . . , X(n)

}
⊂ Σ∗ (initial phase).

2 One (or more) query strings P ∈ Σ∗ of length m
(query phase).

Output: 1 Some data structure DS for the string database.
2 Using DS, search for each P . This may answer

one of the one of the query types: Occurrence,
Longest Prefix, Count, All Prefixes.
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Definitions

Query Types

1 Occurrence: Answer YES, if there exists a prefix X(j)[1,m]
of X(j) ∈ S with d̂(X(j)[1,m], P ) ≤ D, and NO otherwise.

2 Longest Prefix: Answer j, l, if the prefix X(j)[1, l] of
X(j) ∈ S satisfies with d̂(X(j)[1, l], P [1, l]) ≤ D and there is
no i with a longer matching prefix
d̂(X(i)[1, l + 1], P [1, l + 1]) ≤ D.

3 Count: Answer k =
∣∣∣{j | d̂(X(j)[1,m], P ) ≤ D

}∣∣∣.
4 All Prefixes: Answer with the set of all (maximal) matches{

(j, lj) | d̂(X(j)[1, lj ], P [1, lj ]) ≤ D and d(X(j)
lj+1, Plj+1) > 0

}
.
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Algorithms

Overview

Average-Case behavior of “Linear Search” (LS), which simply
compares each query pattern with every database strings.

Average-Case behavior of “Trie Search” (TS), which builds a
trie from all database strings and uses the trie to speed up the
pattern search.

Asymptotically, the worst case for both algorithms for both
algorithms is the same.

There is a threshold in the number of errors, where TS has
the same asymptotic running time.
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Algorithms

LS Algorithm
Input: Strings X1, . . . , Xn and pattern
P , bound D.
for i from 1 to n do

j := 1
c := 0
l := min{length(P ), length(Xi)}
while c ≤ D do

while j ≤ l and d(P [j], Xi[j]) = 0
do

j := j + 1
c := c + 1
j := j + 1

if j − 2 = l then
report match for Xi
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Algorithms

TS Algorithm : rfind(v, P, pos, D)
if D ≥ 0 then

if v is a leaf then
report match for Xvalue(v)

else if pos > length(P ) then
for all leaves u in the subtree of v
do

report match for Xvalue(u)

else
for each child u of v do

let c be the edge label of (u, v)
if d(P [pos], c) = 0 then

rfind(u, P, pos + 1, D)
else

rfind(u, P, pos + 1, D − 1)

Started with rfind(root, P, 0, D)

... ...

1

2

σ

i
d(p,s )=0

d(p,s )=

d(p,s )=

d(p,s )=1

1

1

D−1D−1 D D−1

D
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Probabilistic Model

Probabilistic Model

All strings are generated at random by a memoryless source.

For the a random string u = u1 · · ·un and alphabet
Σ = {s1, . . . , sσ}

Pr {uj = si} =
1
σ

.

We assume that all strings are infinite.

Random variables for the number of character comparisons

LD
n for the LS algorithm and

TD
n for the TS algorithm.
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Probabilistic Model

Error Probability

The error probability of two random characters under the error
function d is given by

p =

∑σ
i=1

∑σ
j=1 d(si, sj)
σ2

.

We define q := 1− p.

Hamming distance: p = 1− 1
σ , q = 1

σ

Number of don’t-cares: p = 2σ−1
σ2 , q = 1− 2σ−1

σ2

Hamming distance with don’t cares: p = 1− 3σ−2
σ2 , q = 3σ−2

σ2

Arithmetic distance: p = 1− 2i+1
σ , q = 2i+1

σ
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Probabilistic Model

Expected Results

The expected depth of a trie is logσ n (Pittel 1986,
Szpankowski 1988).
There are at most n nodes with depth below logσ n in the trie.
We expect a speed up of TS over LS when the expected
number of comparisons for each string is smaller than logσ n.

Gain

No Gain
Fill−Up Level
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Related Work (incomplete)

k-d-tries: Flajolet and Puech 1986

Average behavior of tries and suffix trees: Apostolico and
Szpankowski 1992

Regular Expressions: Baeza-Yates and Gonnet 1996

All-Against-All matching: Baeza-Yates and Gonnet 1999

Hybrid Indexing Method: Navarro and Baeza-Yates 2000

Tree/Trie Traversal algorithms: Jokinen and Ukkonen 1991,
Ukkonen 1993, Cobbs 1995, Schulz and Mihov 2002
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LS Algorithm

Average Complexity of the LS algorithm

E
[
LD

n

]
=

(D + 1)n
p

We can even prove convergence:

lim
n→∞

LD
n

n(D + 1)
=

1
p

(pr.)

lim
n→∞

LD
n

n(D + 1)
=

1
p

(a.s.)
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TS Algorithm

Average Complexity of the TS algorithm

E
[
TD

n

]
=



O
(
(log n)D+1

)
, for D = O (1) and q = σ−1

O
(
(logσ n)D nlogσ q+1

)
, for D = O (1) and q > σ−1

O (1) , for D = O (1) and q < σ−1

o(n), for D + 1 < p logσ n

Ω (n logσ n) , for D + 1 > p logσ n.
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TS Algorithm

Exact Average Complexity of the TS algorithm

For Hamming Distance we have

E
[
TD

n

]
=

σ(σ − 1)D

(D + 1)!
(logσ n)D+1 + O

(
(log n)D

)
,

otherwise we have

E
[
TD

n

]
=

(1− q)D

D!qD+1
(logσ n)D nlogσ q+1C(q, σ, n)

+ O
(
(log n)D−1 nlogσ q+1

)
,

where C(q, σ, n) =
∑

k∈Z n−
2πık
ln σ Γ

(
− logσ q − 1 + 2πık

ln σ

)
= O (1) is

a small, bounded fluctuating function.
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Applications

Applications

For a D = O(1) error search with an alphabet of size 4 we get

Hamming Distance with p = 3
4 , q = 1

4 :

4 · 3D

(D + 1)!
(log4 n)D+1 + O

(
(lnn)D

)
Number of don’t-cares with p = 7

16 , q = 9
16 :

O
(
(lnn)D nlog4

9
16

+1
)

= O
(
(lnn)D n0.59

)
Hamming Distance with don’t-cares with p = 3

8 , q = 5
8 :

O
(
(lnn)D nlog4

5
8
+1
)

= O
(
(lnn)D n0.66

)
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Applications

For the arithmetic distance the case D = 0 for various i is
interesting. Let σ = 24, then p = 1− 2i+1

24 , q = 2i+1
24 . In general

O
(
nlog24

2i+1
24

+1
)

= O
(
nlog24 (2i+1)

)
.

For

i = 1 we get O
(
n0.35

)
,

i = 2 we get O
(
n0.51

)
i = 3 we get O

(
n0.61

)
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Applications

Hamming Distance in Σ = {A, C, G, T, N} with don’t care symbol N
has p = 12

25 , q = 13
25 :

25
13

(
12
13

)D
D!

(log5 n)D nlog5
13
5 C

(
13
25

, 5, n

)
+O

(
(log n)D−1 nlog5

13
5

)
≈ 1.92

(0.4)D

D!
(log2 n)D n0.59 (3.675± 0.005)+O

(
(log n)D−1 n0.59

)
Plots of C

(
13
25 , 5, n

)
: 3,679

3,677

3,678

3,676

n

1000100 1000010

3,675

3,679

3,677

3,678

3,676

n

1000 2E4
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100005000
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LS Algorithm

Average Complexity of the LS algorithm

The probability of k comparisons is

Pr
{
LD

n = k
}

=
∑

i1+...+in=k

n∏
j=1

(
ij − 1

D

)
pD+1qij−D−1.

From it we can derive the probability generating function

gLD
n
(z) = E

[
zLD

n

]
=

∞∑
k=0

Pr
{
LD

n = k
}

zk =
(

pz

1− qz

)n(D+1)

,

which yields the expected value E
[
LD

n

]
= D+1

p n.
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TS Algorithm

Average Complexity of the TS algorithm

Count the number of nodes visited by the search process
(=̂number of comparisons+1).

The expected number of nodes is computed recursively,
summing over all subtrees and distributions of strings.
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TS Algorithm

Average Complexity of the TS algorithm

i , ... , i1 σ

n( )σ−n

... ...

q
q p

q

T T T TD−1 D−1 D−1D
i1 i2 ij iσ

1 +
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TS Algorithm

Average Complexity of the TS algorithm (2)

Boundary conditions: E
[
T−1

n

]
= 1 (last mismatch) and

E
[
TD

0

]
= 0 (no strings).

Recursion:

E
[
TD

n

]
= 1+∑

i1+···+iσ=n

(
n

i1, . . . , iσ

)
σ−n

 σ∑
j=1

pE
[
TD−1

ij

]
+

σ∑
j=1

qE
[
TD

ij

]
For n = 1 we have E

[
TD

1

]
= 1 + D+1

p .
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TS Algorithm

Average Complexity of the TS algorithm (3)

Compute the EGF tD(z), multiply by e−z, define
t̃D(z) = tD(z)e−z, compare coefficients and find that for n > 1

yD
n =

(−1)n−1

1− σ1−nq
+

σ1−np

1− σ1−nq
yD−1

n ,

with Boundary condition y−1
n = (−1)n−1 for n > 0 and

yD
1 = 1 + (D + 1)/p, yD

0 = 0. We get

yD
n =

(−1)nσ1−n

1− σ1−n

(
σ1−np

1− σ1−nq

)D+1

− (−1)n

1− σ1−n
.
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TS Algorithm

Average Complexity of the TS algorithm (4)

We translate back to

E
[
TD

n

]
= n

(
1 +

D + 1
p

)
+

n∑
k=2

(
n

k

)
(−1)k

σk−1 − 1

(
pσ1−k

1− qσ1−k

)D+1

︸ ︷︷ ︸
S(D)

n

−
n∑

k=2

(
n

k

)
(−1)k

1− σ1−k︸ ︷︷ ︸
An

.
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TS Algorithm

Average Compression Number

A similar derivation to the above shows that the sum An is the
solution to

An = n− 1 +
∑

i1+···+iσ=n

(
n

i1, . . . , iσ

)
σ−n

σ∑
j=1

Aij ,

which we call the average “compression number”.

Lemma
The asymptotic behavior of An is

An = n logσ n+

n

1
2
− 1− γ

lnσ
+

∑
k∈Z\{0} n−

2πık
ln σ Γ

(
−1 + 2πık

ln σ

)
lnσ

+ O (1) .
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Rice’s Formula

Let f(z) be an analytic continuation of f(k) = fk that contains
the half line [m,∞). Then

n∑
k=m

(−1)k

(
n

k

)
fk =

(−1)n

2πı

∫
C
f(z)

n!
z(z − 1) · · · (z − n)

dz,

where C is a positively oriented curve that encircles [m, n] and
does not include any of the integers 0, 1, . . . ,m− 1 or other
singularities of f(z).
(⇒ Nörlund 1924)
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We apply Rice’s formula, let C grow to a large half-circle and find
for 1 < ξ < 2

S(D)
n =

1
2πı

∫ −ξ+ı∞

−ξ−ı∞

1
σ−1−z − 1

(
p

σ−1−z − q

)D+1

B(n+1, z)dz

+ O (1) .

Since

π|z|

˛̨̨̨
˛ 1

σ−1−z − 1

„
p

σ−1−z − q

«D+1

B(n + 1, z)

˛̨̨̨
˛ −−−−→|z|→∞

0
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The integral needs to be simplified further by approximation of the
Beta function:

B(n + 1, z) =
Γ(n + 1)Γ(z)
Γ(n + 1 + z)

= Γ(z)n−z + O
(
n−z−1|z|2

)
.

This approximation is uniformly valid, for
(
|z|2
)

= o(n) (Tricomi
and Erdélyi 1951, Fields 1970).
For x < 0 and any strictly positive function f(n) ∈ ω (1) we have∫ ∞

f(n) ln n
|B(n, x + ıy)| dy = O

(
n−f(n)(π

4
−ε)−x

)
.

For constant x 6∈ {0,−1,−2, . . .} we have∫ ∞

−∞
|B(n, x + ıy)| dy = O

(
n−x

)
.
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We are left with

I(D)
ξ,n :=

1
2πı

∫ −ξ+ı∞

−ξ−ı∞

1
σ−1−z − 1

(
p

σ−z−1 − q

)D+1

Γ(z)n−zdz,

which we can evaluate by the residues to the right of <(z) = −ξ.
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Residues in the complex plane

ΓResidues of   (z)

−1σ−z−1
1

−qσ−z−1

1−q )
D+1

(Residues of 

Residues of 

Real values depend on q

Moritz G. Maaß:

Average-Case Analysis of Approximate Trie Search



Outline Introduction Related Work Main Results Basic Analysis Asymptotic Analysis Summary

The residues at <(z) = −1 , An, and the starting terms cancel out.

−

(∑
k∈Z

res
[
g(z), z = −1 +

2πık

lnσ

])
+n

(
1 +

D + 1
p

)
−An = O (1) .
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Highest Order Term

We consider D, q, p, σ constant, the residues at z = 0 and at
<(z) = − logσ q − 1 yield a multi-index sum of which we look at
the term of highest order.
If q = σ−1, this term is

−σ(σ − 1)D

(D + 1)!
(logσ n)D+1 ,

otherwise, this term is

−(1− q)D

D!qD+1
(logσ n)D nlogσ q+1

∑
k∈Z

n−
2πık
ln σ Γ

(
− logσ q − 1 +

2πık

lnσ

)
.

Note that

˛̨̨̨P
k∈Z n−

2πık
ln σ γ

(− logσ q−1+ 2πık
ln σ )

l−i

˛̨̨̨
= O (1) .
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Assume D + 1 = c logσ n, we can bound the integral by

I(D)
ξ,n ≤ C

σξ−1 − 1
n

Ec,q,ξ︷ ︸︸ ︷
c logσ

(
p

σξ−1 − q

)
+ ξ

.
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Residues in the complex plane (2)

ΓResidues of   (z)

−1σ−z−1
1

−qσ−z−1

1−q )
D+1

(Residues of 

Residues of 

*ξ
Minimum depends
on q and c

Real values depend on q
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Sublinear behavior for c < p

If the exponent Ec,q,ξ has a minimum ξ∗ < 1, we are either left
with a term O (nε) or we evaluate the remaining residues. This is
the case if c < p.
For ξ∗ < 0 we have an additional residue for the Gamma function
at z = 0, but it is o(n) for D + 1 = c logσ n.
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Outlook

Search bounded in multiple parameters.

For (very) small D the method might be used to estimate the
complexity for Edit Distance.

Extension to indices with look-up time linear in the size of the
pattern. The average size should behave similar (i.e.,
O (npolylog(n))).

Moritz G. Maaß:

Average-Case Analysis of Approximate Trie Search



Outline Introduction Related Work Main Results Basic Analysis Asymptotic Analysis Summary

Thank you!

Average-Case Analysis of Approximate Trie Search
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