‘Affix Treesl

Moritz G. Maaf3, June 2000

http://www.informatik.tu-muenchen.de/~maass

maass@informatik.tu-muenchen.de

[Agenda]

1. Introduction
2. Construction of Suffix Trees
3. Construction Affix Trees

4. Complexity

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

[Important Suffix Tree Properties]

e Representation of repeated sub-
strings

e Right branching substrings are

represented by branching nodes

e Each tree position represents a

unique string

e Moving down in the tree extends
the string, moving towards the

root shortens the string.

Linear Bidirectional On-Line Construction of Affix Trees

Moritz G. MaaB, June 2000

[Representation of Tree Positions with Reference Pairs]

root | +

Suffix Links

e Two ways of “shortening” the
represented substring abab
at the front to come to the po-

sition of bab

e Suffix links operate at the
front of the represented tree,
while edges operate at the
end

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000 4

Reverse Tree

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

Affix Trees

CST(ababc) CAT(ababc) CAT(cbaba) CST(cbaba)

1root

1root

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

Definition 1 (right branching and left branching). A substring

w of t is right branching (left-branching), if there w occurs at two v

different positions in t with distinct succeding (preceding) letters (w Ay
\

isrb.int, ifdr,y € X, u,v,u’, v € Xt =uwxv A t= /V
vwyv” A X FEy)

Definition 2 (X T-tree). A X" -tree T is a rooted, directed tree with a \p

edge labels from YT, Foreacha € X, every node in’l’ has at most D \a
a
one outgoing edge whose label starts with a. bi

Definition 3 (path(n)). /fn is a node in X -tree T, then path(n) is the string built
by concatenating all edge labels from the root to n. It is a unique identifier for the

tree position.

Definition 4 (words(T')). A string u is in words(T"), if there is a noden inl" s.t.
Jv € ¥*.uv = path(n).

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

Suffix Trees and Suffix Links

> root

Definition 5 (Suffix tree). A
suffix tree of string t is a
Y. -tree with words(T) =

{u|u is a substring of t }.

Definition 6 (Suffix Link). A suffix link is an auxiliary edge from node n to node m
where m is the node s.t. path(m) is the longest proper suffix of path(n)

represented by a node in1T'.

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

Reverse Tree and Affix Trees

root
Definition 7 (Reverse tree 7'~ '). The reverse tree Pz \b
T—1 of a Xt -tree T augmented with suffix links is %
defined as the tree that is formed by the suffix links of (3) a

T', where the direction of each link is reversed, but the %gl

label is kept. \@ q

Definition 8 (Affix tree). An affix tree’l’ of a stringt is a ¥ T -tree s.t
words(T) = {u|u is a substring of t} and

words(T~1) = {u|u is a substring of t 1}

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

Affix Trees

Linear Bidirectional On-Line Construction of Affix Trees

' ba

Moritz G. MaaB, June 2000

Previous Work]

e Weiner, McCreight: linear suffix tree construction
e Ukkonen: linear on-line suffix tree construction, reference pairs, open edges

e Giegerich and Kurtz: relationship between suffix tree and its reverse tree
through suffix links

e Stoye: affix tree data structure

e Blumer et al.: DAWG, c-DAWG with suffix links invariant under reversal

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

1. Introduction

2. Construction of Suffix Trees

Linear Bidirectional On-Line Construction of Affix Trees

3. Construction Affix Trees

4. Complexity

Moritz G. MaaB, June 2000

On-Line Suffix Tree Construction

CST(bbabaaba) CST(bbabaabab)

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

Anti-On-Line Suffix Tree Construction

CST(abaababb) CST(babaababb)

inear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

[Complexity of Suffix Tree Construction]

Lemma 1. Ukkonen'’s algorithm constructs CST(t) on-line in time O(|t]).

Lemma 2. With the additional infor-
mation of knowing the length of the
active prefix for any suffix s of t be-
fore inserting it, it takes O(|t|) time
to construct CST(t) in an anti-on-

line manner.

Linear Bidirectional On-Line Construction of Affix Trees

root root
d b d b
o= O o= O
by ».a by, ».a
a() O a<><— . ‘bQ
O b O
b b

Moritz G. MaaB, June 2000

Linear Bidirectional On-Line Construction of Affix Trees

1. Introduction

2. Construction of Suffix Trees

3. Construction Affix Trees

4. Complexity

Moritz G. MaaB, June 2000

[The Problem in Constructing Affix Trees]

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

[The Problem in Constructing Affix Trees (continued)]

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

Linear Bidirectional On-Line Construction of Affix Trees

[The Solution: Paths

Moritz G. MaaB, June 2000

[The Solution: Paths (continued)]

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

20

[Additional Steps in Affix Tree Construction]

e Updating Paths:

Lemma 3. The prefix parent of the active suffix leaf is (also) a prefix node.

e Keeping track of the active suffix point, the active prefix point, the active suffix

leaf, and the active prefix leaf:

Lemma 4. The active prefix will grow in the iteration fromt to ta, iff the new

active suffix of ta is represented by a prefix leaf in CAT(t).

e Deleting Nodes

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

21

[Summary of all Steps]

1. Remove the suffix link from the active suffix link to s.

2. Lengthen the text, thereby lengthening all open edges.

3. Insert the prefix node for ¢ as suffix parent of ta and link it to s.
4. Insert relevant suffixes and update suffix links.

5. Make the location of the new active suffix a(ta) explicit and add a suffix link

from the new active suffix link to it.

6. Update the active prefix, possibly deleting a node.

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

22

| Example of a Single lteration |

Linear Bidirectional On-Line Construction of Affix Trees

Moritz G. MaaB, June 2000

| root |—+endpoint ...

23

Linear Bidirectional On-Line Construction of Affix Trees

1. Introduction

2. Construction of Suffix Trees

3. Construction Affix Trees

4. Complexity

Moritz G. MaaB, June 2000

24

[Complexity of Affix Tree Construction]

Theorem 1. CAT(t) can be constructed in an on-line manner from left to right or
from right to left in time O(|t|).

Theorem 2. Bidirectional construction of affix trees has linear time complexity.

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

25

[Bidirectional Construction - Changes to the Active Prefix Point]

root

oot

Ny Ny

0= Oe

O o=

Linear Bidirectional On-Line Construction of Affix Trees

o= O Oe

\.

m\@é__\

)

)

,H_OA_\

O=-=0
)
U

Moritz G. MaaB, June 2000

0'4

M‘"Q O‘

26

[Bidirectional Construction - Changes to the Active Suffix Point]

e Growth of the active suf-
fix in a reverse iteration
adds node-accounted
part.

e Insertion of suffix nodes
in a reverse iteration is
only relevant to node-

accounted part.

e node-accounted part

can not be nested.

Linear Bidirectional On-Line Construction of Affix Trees

¥

node —accoun

string—accour

string part of

active suffi

X

Moritz G. MaaB, June 2000

27

Conclusion]

e Affix trees are a natural extension of suffix trees.

e Construction can be done in linear time, on-line and bidirectional.

e Affix tree augmented by paths behave like suffix trees.

e The view can be switched from the suffix to the prefix tree at any time.

e Right branching and left branching substrings represented in one structure.

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. MaaB, June 2000

