
A f f i x T r e e s

Moritz G. Maaß, June 2000

http://www.informatik.tu-muenchen.de/∼maass

maass@informatik.tu-muenchen.de

Agenda

1. Introduction

2. Construction of Suffix Trees

3. Construction Affix Trees

4. Complexity

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 1

Important Suffix Tree Properties

• Representation of repeated sub-

strings

• Right branching substrings are

represented by branching nodes

• Each tree position represents a

unique string

• Moving down in the tree extends

the string, moving towards the

root shortens the string.

x

y

x

y

w

v’

v

w

w v

v’

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 2

Representation of Tree Positions with Reference Pairs

root
c b

c

c

c

a
b

a
b

a
b
c ab

aroot

5

21

3

6

9

4

+

+

+

ε

2

5

+3 ε

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 3

Suffix Links

• Two ways of “shortening” the

represented substring abab

at the front to come to the po-

sition of bab

• Suffix links operate at the

front of the represented tree,

while edges operate at the

end

root
c

c

c

c

a

c
b

a

bb
a
b

5

21

3

6

9

4

c
b

b

a

b

a

a

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 4

Reverse Tree

root root
c b

c

c

c

a
b

a
b

a
b
c

c

b

a
b

a

a

b

5

21

3

6

9

4

5

1

3

6

4 9

2
().

−1

a

b

a

b

c

a

b a

b

b

c

c
a

b

c c
a
b
c

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 5

Affix Trees

CST(ababc) CAT(ababc) CAT(cbaba) CST(cbaba)

root

b
ab

a
b

c

c

c

c

c

a

b

9

6

4

5

2

3

1

root

b
ab

a
b

c

c

c

c

c

a

b

9

c

b
a

b

ab

a

b

a

8

7
a

b

a

4

6

3

1 2

5

root

c

c

c

b

a

bc a

b

b

c

a

9

a

b

c

b
a

a

b

a

b
a

a
b

5

21

3

6

4 8

7

root
a

b

b

c

a

9

a

b

c

b
a

a

b

a

b
a

a
b

8

7

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 6

Definition 1 (right branching and left branching). A substring

w of t is right branching (left-branching), if there w occurs at two

different positions in t with distinct succeding (preceding) letters (w

is r.b. in t, if ∃x, y ∈ Σ, u, v, u′, v′ ∈ Σ∗.t = uwxv ∧ t =

u′wyv′ ∧ x 6= y).

yx

w

v v’

Definition 2 (Σ+-tree). A Σ+-tree T is a rooted, directed tree with

edge labels from Σ+. For each a ∈ Σ, every node in T has at most

one outgoing edge whose label starts with a.

root
a

a
b

a

b

Definition 3 (path(n)). If n is a node in Σ+-tree T , then path(n) is the string built

by concatenating all edge labels from the root to n. It is a unique identifier for the

tree position.

Definition 4 (words(T)). A string u is in words(T), if there is a node n in T s.t.

∃v ∈ Σ∗.uv = path(n).

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 7

Suffix Trees and Suffix Links

Definition 5 (Suffix tree). A

suffix tree of string t is a

Σ+-tree with words(T) =

{u|u is a substring of t}.

root
c b

c

c

c

a
b

a
b

a
b
c

5

21

3

6

9

4

c
b

b

a

b

a

a

Definition 6 (Suffix Link). A suffix link is an auxiliary edge from node n to node m

where m is the node s.t. path(m) is the longest proper suffix of path(n)

represented by a node in T .

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 8

Reverse Tree and Affix Trees

Definition 7 (Reverse tree T−1). The reverse tree

T−1 of a Σ+-tree T augmented with suffix links is

defined as the tree that is formed by the suffix links of

T , where the direction of each link is reversed, but the

label is kept.

root
b

a

c

b

a
b

a

2
1

3

6

4 9

5

Definition 8 (Affix tree). An affix tree T of a string t is a Σ+-tree s.t.

words(T) = {u|u is a substring of t} and

words(T−1) = {u|u is a substring of t−1}.

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 9

Affix Trees

root

b

c

c

b

c

a

c

a

c
b

a
b

ba

aba

c

a

b

a

a

b

b

1 2

3

4

6 7

8

9

5

root
c

a

a

b

b

b

a

a

b
a

b

a

1

c

bab

a

b

c

abc

c

c

2

5 3

4

67

8

9

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 10

Previous Work

• Weiner, McCreight: linear suffix tree construction

• Ukkonen: linear on-line suffix tree construction, reference pairs, open edges

• Giegerich and Kurtz: relationship between suffix tree and its reverse tree

through suffix links

• Stoye: affix tree data structure

• Blumer et al.: DAWG, c-DAWG with suffix links invariant under reversal

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 11

1. Introduction

2. Construction of Suffix Trees

3. Construction Affix Trees

4. Complexity

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 12

On-Line Suffix Tree Construction

root
b

ab
a
b
a
a
b
a

a
b
a

baa
ba

baa
b
a

aba

a
root

b a
a

b

b
a
b
a
a
b
a
b

a
b
a
b

a
ba

b

ababb
abaa

ba
b

CST(bbabaaba) CST(bbabaabab)

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 13

Anti-On-Line Suffix Tree Construction

root

b bbb

n’

n’’

ab

b
b

a
b
a
b
b

b
b

a
b
a
b
b

a a

ab

ab

n
+"b"

root

b b bb

b

ab

b

b

a a

a
b
a
b
b

b
b

a
b
a
b
b

aa
ba
b
b

ab

a

CST(abaababb) CST(babaababb)

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 14

Complexity of Suffix Tree Construction

Lemma 1. Ukkonen’s algorithm constructs CST(t) on-line in time O(|t|).

Lemma 2. With the additional infor-

mation of knowing the length of the

active prefix for any suffix s of t be-

fore inserting it, it takes O(|t|) time

to construct CST(t) in an anti-on-

line manner.

root

b
b

b

a

a

b

ab

root

b
b

b

a

a

b

ab

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 15

1. Introduction

2. Construction of Suffix Trees

3. Construction Affix Trees

4. Complexity

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 16

The Problem in Constructing Affix Trees

root

a

a
b

a
a

b

a

a

ba

a

ba

a

a

b

a

a

b

b

a

baa

a

a

a

b

ba

ba

b

a
b

a
b

a

b
a

1.

2.

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 17

The Problem in Constructing Affix Trees (continued)

root

a

a

a

a

a

a

a

b

a

a

ba

a

a

b

b

a

a

a

a

a
a

b

ba

baa

baa

ba
a

a

ba
b

b

b

ab

a

a

b
a
a

b a
b

a

b
a

a

a
b

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 18

The Solution: Paths

root

a

a

a

a

a

a
b

a
a

b

a

ba

a

ba

a

a

b

a

a

b

b

a

baa

a

a

a

b

ba

ba

a

b

b

b

b

1.
2.

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 19

The Solution: Paths (continued)

root

a

a

a

a

a

a

a
a

a

b

a

a

ba

a

a

b

b

a

a

a

a

a
a

b

ba

baa

baa

ba
a

a

ba
b

b

b

ab

a

a

b

a
b

b
a

b
a

b
a

a

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 20

Additional Steps in Affix Tree Construction

• Updating Paths:

Lemma 3. The prefix parent of the active suffix leaf is (also) a prefix node.

• Keeping track of the active suffix point, the active prefix point, the active suffix

leaf, and the active prefix leaf:

Lemma 4. The active prefix will grow in the iteration from t to ta, iff the new

active suffix of ta is represented by a prefix leaf in CAT(t).

• Deleting Nodes

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 21

Summary of all Steps

1. Remove the suffix link from the active suffix link to s.

2. Lengthen the text, thereby lengthening all open edges.

3. Insert the prefix node for t as suffix parent of ta and link it to s.

4. Insert relevant suffixes and update suffix links.

5. Make the location of the new active suffix α(ta) explicit and add a suffix link

from the new active suffix link to it.

6. Update the active prefix, possibly deleting a node.

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 22

Example of a Single Iteration

root root rootroot

b

a

a b

a

a

a

b

b

b

a

a

a

b

a

b

b

a

a
b

a

b

a
b

a
b b

a

b

a

b

a

a

a

a

root

2

4

1

4

5

1

63

2

4

1

4

5

1

63

2

1

4 s

asl asl

asl

asl

asp

asp

asp

asp
s

endpoint

b

b

a

b

(a) (b) (c) (d) (e)

b

b

a

ab

ba

a

b

b

a

b

ab

b

ab

b

a

a
ba

asp
s

b

b

b

a

a

3

5 5

3

5

3

7

2

asl 6

7

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 23

1. Introduction

2. Construction of Suffix Trees

3. Construction Affix Trees

4. Complexity

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 24

Complexity of Affix Tree Construction

Theorem 1. CAT(t) can be constructed in an on-line manner from left to right or

from right to left in time O(|t|).

Theorem 2. Bidirectional construction of affix trees has linear time complexity.

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 25

Bidirectional Construction - Changes to the Active Prefix Point

root root

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 26

Bidirectional Construction - Changes to the Active Suffix Point

• Growth of the active suf-

fix in a reverse iteration

adds node-accounted

part.

• Insertion of suffix nodes

in a reverse iteration is

only relevant to node-

accounted part.

• node-accounted part

can not be nested.

string−accounted

node −accounted

string part of
active suffix

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 27

Conclusion

• Affix trees are a natural extension of suffix trees.

• Construction can be done in linear time, on-line and bidirectional.

• Affix tree augmented by paths behave like suffix trees.

• The view can be switched from the suffix to the prefix tree at any time.

• Right branching and left branching substrings represented in one structure.

Linear Bidirectional On-Line Construction of Affix Trees Moritz G. Maaß, June 2000 28

