Randomized Rounding

Jannis Beese

Ferienakademie im Sarntal 2012
FAU Erlangen-Nürnberg, TU München, Uni Stuttgart

September 2012

Overview

1 Introduction
■ Randomized Algorithms
■ Useful tools

2 Randomized Rounding
■ Introduction
■ Lattice Approximation
■ Maximum Satisfiability

3 Semidefinite Programming
■ Introduction
■ Maximum Weighted Cut

Overview

1 Introduction
■ Randomized Algorithms
■ Useful tools

2 Randomized Rounding

- Introduction
- Lattice Approximation
- Maximum Satisfiability

3 Semidefinite Programming

- Introduction
- Maximum Weighted Cut

FITITI

Why random/approximation?

■ Solve hard problems well enough.

Why random/approximation?

■ Solve hard problems well enough.
■ Using only randomness is not enough: $(B P P=P)$?

Why random/approximation?

■ Solve hard problems well enough.
■ Using only randomness is not enough: $(B P P=P)$?

- Error bounds in deterministic approximation are often bad or hard to estimate.

Goals

For all instances of the problem:
■ Fast.

FITTIT

Goals

For all instances of the problem:

- Fast.

■ With high probability: Close to an optimal solution.

Performance Ratio of a Randomized Algorithm

Let x be an instance of the Problem P. Let A be an algorithm for solving P, let $m_{A}(x)$ denote the size of the solution produced by A on x and let $m^{*}(x)$ denote the size of an optimal solution. The performance ratio is given by

$$
\begin{equation*}
\max \left\{\sup _{x \in P} \frac{m^{*}(x)}{m_{A}(x)}, \inf _{x \in P} \frac{m_{A}(x)}{m^{*}(x)}\right\} . \tag{1}
\end{equation*}
$$

Performance Ratio of a Randomized Algorithm

Let x be an instance of the Problem P. Let A be an algorithm for solving P, let $m_{A}(x)$ denote the size of the solution produced by A on x and let $m^{*}(x)$ denote the size of an optimal solution. The performance ratio is given by

$$
\begin{equation*}
\max \left\{\sup _{x \in P} \frac{m^{*}(x)}{m_{A}(x)}, \inf _{x \in P} \frac{m_{A}(x)}{m^{*}(x)}\right\} . \tag{1}
\end{equation*}
$$

If A uses randomization: $\mathbb{E}\left[m_{A}(x)\right]$

Overview

1 Introduction

- Randomized Algorithms

■ Useful tools

2 Randomized Rounding

- Introduction
- Lattice Approximation
- Maximum Satisfiability

3 Semidefinite Programming

- Introduction
- Maximum Weighted Cut

Boole's inequality

Theorem (Boole's inequality)
Let $\left(A_{i}\right)$ be any countable set of events. Then

$$
\begin{equation*}
{ }^{P}\left[U_{1} A\right] \leq \sum_{1}^{P}[A] . \tag{2}
\end{equation*}
$$

FITTIT

Chernoff-Bound variant

Theorem (Chernoff-Bound variant)

Let X_{1}, \ldots, X_{n} be a sequence of independent Bernoulli trials, such that $\mathbb{P}\left[X_{i}=1\right]=p_{i}$ and $\mathbb{P}\left[X_{i}=0\right]=1-p_{i}$. Let S be a subset of $\{1, \ldots, n\}$ and let $s=|S|$. Define $X=\sum_{i \in S} X_{i}$. Then

$$
\begin{equation*}
\mathbb{P}[|X-\mathbb{E}[X]|>\sqrt{4 s \ln s}] \leq \frac{1}{s^{2}} . \tag{3}
\end{equation*}
$$

FITITI

Linear Programming

A Linear Program is a problem of the following type:

Maximize	$\mathbf{c}^{T} \mathbf{x}$
constrained by	
for $\leq \mathbf{b}$	

Linear Programming

A Linear Program is a problem of the following type:

Maximize	$\mathbf{c}^{\top} \mathbf{x}$
constrained by	Ax \leq b
for	$\mathbf{c ,} \mathbf{b} \in \mathbb{Q}^{n}, \mathbf{A} \in \mathbb{Q}^{n \times n}$

While Linear Programs are efficiently solvable, Integer Linear Programming (ILP) is known to be NP complete.

Overview

1 Introduction

- Randomized Algorithms
- Useful tools

2 Randomized Rounding
■ Introduction

- Lattice Approximation
- Maximum Satisfiability

3 Semidefinite Programming

- Introduction
- Maximum Weighted Cut

FITITI

Randomized Rounding

1 Rewrite the problem as an Integer Linear Program.

FUTIT

Randomized Rounding

1 Rewrite the problem as an Integer Linear Program.
2 Relax the integrality requirement and compute an optimal solution to the corresponding LP.

Randomized Rounding

1 Rewrite the problem as an Integer Linear Program.
2 Relax the integrality requirement and compute an optimal solution to the corresponding LP.
3 Approximate the optimal LP-solution to obtain an integer-approximation of the ILP-solution.

Randomized Rounding: Analysis

Let $P=(\mathbf{A}, \mathbf{c}, \mathbf{b})$ be an ILP, let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ denote the variable vector of P and let $\widehat{\mathbf{x}}=\left(\widehat{x_{1}}, \ldots, \widehat{x_{n}}\right)$ denote a solution to the corresponding Linear Program.

Randomized Rounding: Analysis

Let $P=(\mathbf{A}, \mathbf{c}, \mathbf{b})$ be an ILP, let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ denote the variable vector of P and let $\widehat{\mathbf{x}}=\left(\widehat{x_{1}}, \ldots, \widehat{x_{n}}\right)$ denote a solution to the corresponding Linear Program.
For each $i=1, \ldots, n$ define $\overline{x_{i}}$ equal to 1 with probability \widehat{x}_{i} and equal to 0 otherwise. Let $\overline{\mathbf{x}}=\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right)$ be the corresponding vector of random variables.

Randomized Rounding: Analysis

Let $P=(\mathbf{A}, \mathbf{c}, \mathbf{b})$ be an ILP, let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ denote the variable vector of P and let $\widehat{\mathbf{x}}=\left(\widehat{x_{1}}, \ldots, \widehat{x_{n}}\right)$ denote a solution to the corresponding Linear Program.
For each $i=1, \ldots, n$ define $\overline{x_{i}}$ equal to 1 with probability \widehat{x}_{i} and equal to 0 otherwise. Let $\overline{\mathbf{x}}=\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right)$ be the corresponding vector of random variables.
Then for any row vector a of \mathbf{A}

$$
\mathbb{E}[\mathbf{a} \cdot \overline{\mathbf{x}}]=\mathbf{a} \cdot \widehat{\mathbf{x}}
$$

Overview

1 Introduction
■ Randomized Algorithms

- Useful tools

2 Randomized Rounding

- Introduction

■ Lattice Approximation

- Maximum Satisfiability

3 Semidefinite Programming

- Introduction
- Maximum Weighted Cut

FUTM

Lattice Approximation: Problem Statement

Let $\mathbf{A} \in \mathbb{B}^{n \times n}=\{0,1\}^{n \times n}$ be a $n \times n$ matrix with entries in $\{0,1\}$ and $\mathbf{p} \in[0,1]^{n}$ a vector with entries in the real interval $[0,1]$.

Lattice Approximation: Problem Statement

Let $\mathbf{A} \in \mathbb{B}^{n \times n}=\{0,1\}^{n \times n}$ be a $n \times n$ matrix with entries in $\{0,1\}$ and $\mathbf{p} \in[0,1]^{n}$ a vector with entries in the real interval $[0,1]$.
The goal is to find a $0-1$-vector \mathbf{q} such that $\|\mathbf{A} \cdot(\mathbf{p}-\mathbf{q})\|_{\infty}$ is minimal.

Lattice Approximation: Problem Statement

Let $\mathbf{A} \in \mathbb{B}^{n \times n}=\{0,1\}^{n \times n}$ be a $n \times n$ matrix with entries in $\{0,1\}$ and $\mathbf{p} \in[0,1]^{n}$ a vector with entries in the real interval $[0,1]$.
The goal is to find a $0-1$-vector \mathbf{q} such that $\|\mathbf{A} \cdot(\mathbf{p}-\mathbf{q})\|_{\infty}$ is minimal. This is already stated as LP!

Lattice Approximation: Solution step 2

$$
\min _{\mathbf{q} \in \mathbb{F}_{2}^{n}}\|\mathbf{A} \cdot(\mathbf{p}-\mathbf{q})\|_{\infty}
$$

■ Step 2: Solve the non-integral version of the problem.

Lattice Approximation: Solution step 2

$$
\min _{\mathbf{q} \in \mathbb{F}_{2}^{n}}\|\mathbf{A} \cdot(\mathbf{p}-\mathbf{q})\|_{\infty}
$$

■ Step 2: Solve the non-integral version of the problem.
■ Simply choose $\mathbf{q}=\mathbf{p}$.

Lattice Approximation: Solution step 3

$$
\min _{\mathbf{q} \in \mathbb{F}_{2}^{n}}\|\mathbf{A} \cdot(\mathbf{p}-\mathbf{q})\|_{\infty}
$$

■ Choose $\overline{\mathbf{q}}$ with $\overline{q_{i}}=1$ with probability p_{i} as solution.

FATMTI

Lattice Approximation: Solution step 3

$$
\min _{\mathbf{q} \in \mathbb{F}_{2}^{n}}\|\mathbf{A} \cdot(\mathbf{p}-\mathbf{q})\|_{\infty}
$$

■ Choose $\overline{\mathbf{q}}$ with $\overline{q_{i}}=1$ with probability p_{i} as solution.
$\square \mathbb{E}\left[\mathbf{A}_{\mathbf{i}} \cdot \overline{\mathbf{q}}\right]=\mathbf{A}_{\mathbf{i}} \cdot \mathbf{p}$

Lattice Approximation: Solution step 3

$$
\min _{\mathbf{q} \in \mathbb{F}_{2}^{n}}\|\mathbf{A} \cdot(\mathbf{p}-\mathbf{q})\|_{\infty}
$$

■ Choose $\overline{\mathbf{q}}$ with $\overline{q_{i}}=1$ with probability p_{i} as solution.
$■ \mathbb{E}\left[\mathbf{A}_{\mathbf{i}} \cdot \overline{\mathbf{q}}\right]=\mathbf{A}_{\mathbf{i}} \cdot \mathbf{p}$
■ Chernoff:

$$
\mathbb{P}\left[\left|\mathbf{A}_{\mathbf{i}} \cdot \overline{\mathbf{q}}-\mathbf{A}_{\mathbf{i}} \cdot \mathbf{p}\right| \geq \sqrt{4 n \ln n}\right] \leq \frac{1}{n^{2}}
$$

Lattice Approximation: Solution analysis

$$
\begin{aligned}
\mathbb{P}\left[\|\mathbf{A} \cdot(\overline{\mathbf{q}}-\mathbf{p})\|_{\infty}>\sqrt{4 n \ln n}\right] & =\mathbb{P}\left[\bigcup_{i}\left|\mathbf{A}_{\mathbf{i}} \cdot \mathbf{q}-\mathbf{A}_{\mathbf{i}} \cdot \mathbf{p}\right|>\sqrt{4 n \ln n}\right] \\
& \leq \sum_{i} \mathbb{P}\left[\left|\mathbf{A}_{\mathbf{i}} \cdot \overline{\mathbf{q}}-\mathbf{A}_{\mathbf{i}} \cdot \mathbf{p}\right|>\sqrt{4 n \ln n}\right] \\
& \leq \frac{1}{n}
\end{aligned}
$$

Lattice Approximation: Solution analysis

$$
\begin{aligned}
\mathbb{P}\left[\|\mathbf{A} \cdot(\overline{\mathbf{q}}-\mathbf{p})\|_{\infty}>\sqrt{4 n \ln n}\right] & =\mathbb{P}\left[\bigcup_{i}\left|\mathbf{A}_{\mathbf{i}} \cdot \mathbf{q}-\mathbf{A}_{\mathbf{i}} \cdot \mathbf{p}\right|>\sqrt{4 n \ln n}\right] \\
& \leq \sum_{i} \mathbb{P}\left[\left|\mathbf{A}_{\mathbf{i}} \cdot \overline{\mathbf{q}}-\mathbf{A}_{\mathbf{i}} \cdot \mathbf{p}\right|>\sqrt{4 n \ln n}\right] \\
& \leq \frac{1}{n}
\end{aligned}
$$

Thus with probability $1-\frac{1}{n}$ we find a solution $\overline{\mathbf{q}}$ with
$\|\mathbf{A} \cdot(\overline{\mathbf{q}}-\mathbf{p})\|_{\infty} \leq \sqrt{4 n \ln n}$.

Overview

1 Introduction

- Randomized Algorithms
- Useful tools

2 Randomized Rounding

- Introduction
- Lattice Approximation

■ Maximum Satisfiability

3 Semidefinite Programming

- Introduction
- Maximum Weighted Cut

FUTM

MaxSAT: Problem Statement

Let I be an instance of SAT, which without loss of generality is assumed to be in conjunctive normal form (CNF), i.e. a set C of clauses in CNF over a set of boolean variables V.

MaxSAT: Problem Statement

Let I be an instance of SAT, which without loss of generality is assumed to be in conjunctive normal form (CNF), i.e. a set C of clauses in CNF over a set of boolean variables V.
A solution to this problem is an assignment $A: V \rightarrow \mathbb{B}$, such that the number of clauses $m_{A}(I)$ that evaluate to true is maximal.

MaxSAT: Solution Step 1

\square Clause $C_{j} \rightarrow z_{j}$ with $z_{j}=1$, iff C_{j} evaluates to true.

FITTII

MaxSAT: Solution Step 1

\square Clause $C_{j} \rightarrow z_{j}$ with $z_{j}=1$, iff C_{j} evaluates to true.
$■$ Variable $x_{i} \rightarrow y_{i}$ with $y_{i}=1$, iff x_{i} is set to true.

MaxSAT: Solution Step 1

\square Clause $C_{j} \rightarrow z_{j}$ with $z_{j}=1$, iff C_{j} evaluates to true.
■ Variable $x_{i} \rightarrow y_{i}$ with $y_{i}=1$, iff x_{i} is set to true.
$\square S_{j}^{+}$: Set of variables that appear in $C_{j} . S_{j}^{-}$analoguous.

MaxSAT: Solution Step 1

\square Clause $C_{j} \rightarrow z_{j}$ with $z_{j}=1$, iff C_{j} evaluates to true.
\square Variable $x_{i} \rightarrow y_{i}$ with $y_{i}=1$, iff x_{i} is set to true.
$\square S_{j}^{+}$: Set of variables that appear in $C_{j} . S_{j}^{-}$analoguous.

MaxSAT: Solution Step 2+3

We need two algorithms:

MaxSAT: Solution Step 2+3

We need two algorithms:
1 Randomized Rounding. Works well for clauses with few literals:

Lemma

Let C_{j} be a clause with k literals. Then for the probability p_{j} that C_{j} evaluates to true, the following holds:

$$
p_{j} \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) \widehat{z}_{j}
$$

FITTII

MaxSAT: Solution Step 2+3

We need two algorithms:
1 Randomized Rounding. Works well for clauses with few literals:

Lemma

Let C_{j} be a clause with k literals. Then for the probability p_{j} that C_{j} evaluates to true, the following holds:

$$
p_{j} \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) \widehat{z}_{j} .
$$

2 Assign truth values with equal probability. Works well for large clauses:

$$
p_{j} \geq\left(1-\frac{1}{2^{k}}\right) .
$$

MaxSAT: Solution Analysis

Have:

■ Randomized Rounding for small clauses.

$$
p_{j} \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) \widehat{z}_{j}
$$

■ Random truth assignment for large clauses.

$$
p_{j} \geq\left(1-\frac{1}{2^{k}}\right)
$$

MaxSAT: Solution Analysis

Have:
■ Randomized Rounding for small clauses.

$$
p_{j} \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) \widehat{z}_{j}
$$

■ Random truth assignment for large clauses.

$$
p_{j} \geq\left(1-\frac{1}{2^{k}}\right)
$$

Simply running both algorithms and choosing the better output already leads to a $\frac{4}{3}$-approximation.

k	$\left(1-\frac{1}{2^{k}}\right)$	$\left(1-\left(1-\frac{1}{k}\right)^{k}\right)$
1	$\frac{1}{2}$	1
2	$\frac{3}{4}$	$\frac{3}{4}$
≥ 3	$\geq \frac{7}{8}$	$\geq 1-\frac{1}{6} \geq \frac{5}{8}$

FAUTIT

k	$\left(1-\frac{1}{2^{k}}\right)$	$\left(1-\left(1-\frac{1}{k}\right)^{k}\right)$
1	$\frac{1}{2}$	1
2	$\frac{3}{4}$	$\frac{3}{4}$
≥ 3	$\geq \frac{7}{8}$	$\geq 1-\frac{1}{e} \geq \frac{5}{8}$

$$
\begin{align*}
\max \left\{m_{1}, m_{2}\right\} & \geq \frac{1}{2}\left(m_{1}+m_{2}\right) \tag{4}\\
& \geq \sum_{k \geq 1} \sum_{c_{j} \in C_{k}} \frac{\alpha_{k}+\beta_{k}}{2} \widehat{z}_{j} \tag{5}\\
& \geq \frac{3}{4} \cdot O P T \tag{6}
\end{align*}
$$

Overview

1 Introduction

- Randomized Algorithms
- Useful tools

2 Randomized Rounding

- Introduction
- Lattice Approximation
- Maximum Satisfiability

3 Semidefinite Programming
■ Introduction

- Maximum Weighted Cut

FITTII

Semidefinite Programming(1)

$$
\begin{array}{rc}
\min _{x^{1}, \ldots, x^{n} \in \mathbb{R}^{n}} & \sum_{i, j=1, \ldots, n} c_{i, j}\left(x^{i} \cdot x^{j}\right) \\
\text { constrained by } & \sum_{i, j=1, \ldots, n} a_{i, j, k}\left(x^{i} \cdot x^{j}\right) \leq b_{k} \forall k .
\end{array}
$$

Semidefinite Programming(1)

$$
\begin{array}{rc}
\min _{x^{1}, \ldots, x^{n} \in \mathbb{R}^{n}} & \sum_{i, j=1, \ldots, n} c_{i, j}\left(x^{i} \cdot x^{j}\right) \\
\text { constrained by } & \sum_{i, j=1, \ldots, n} a_{i, j, k}\left(x^{i} \cdot x^{j}\right) \leq b_{k} \forall k .
\end{array}
$$

■ Uses dot products of vectors.

Semidefinite Programming(1)

$$
\begin{array}{rc}
\min _{x^{1}, \ldots, x^{n} \in \mathbb{R}^{n}} & \sum_{i, j=1, \ldots, n} c_{i, j}\left(x^{i} \cdot x^{j}\right) \\
\text { constrained by } & \sum_{i, j=1, \ldots, n} a_{i, j, k}\left(x^{i} \cdot x^{j}\right) \leq b_{k} \forall k
\end{array}
$$

■ Uses dot products of vectors.
■ Called "Semidefinite" as this may also be defined through positive-semidefinite matrices.

Semidefinite Programming(2)

$$
\begin{array}{r}
\min _{x^{1}, \ldots, x^{n} \in \mathbb{R}^{n}} \\
\text { constrained by }
\end{array}
$$

$$
\begin{array}{r}
\sum_{i, j=1, \ldots, n} c_{i, j}\left(x^{i} \cdot x^{j}\right) \\
\sum_{i, j=1, \ldots, n} a_{i, j, k}\left(x^{i} \cdot x^{j}\right) \leq b_{k} \forall k
\end{array}
$$

■ There exist efficient algorithms for solving SDPs (up to an arbitrarily small error).

Semidefinite Programming(2)

$$
\begin{array}{r}
\min _{x^{1}, \ldots, x^{n} \in \mathbb{R}^{n}} \\
\text { constrained by }
\end{array} \sum_{i, j=1, \ldots, n} c_{i, j}\left(x^{i} \cdot x^{j}\right),
$$

■ There exist efficient algorithms for solving SDPs (up to an arbitrarily small error).
■ Many problems may be stated as a SDP.

Overview

1 Introduction

- Randomized Algorithms
- Useful tools

2 Randomized Rounding

- Introduction
- Lattice Approximation
- Maximum Satisfiability

3 Semidefinite Programming

- Introduction

■ Maximum Weighted Cut

FITIT

Maximum Weighted Cut: Problem Statement

Let $G=(V, E)$ be an undirected Graph and let $w: E \rightarrow \mathbb{N}$. The goal is to find a Partition $\Pi=\left(V_{1}, V_{2}\right)$ of V, such that sum of the weights of the edges from V_{1} to V_{2} is maximized.

Maximum Weighted Cut: Problem Statement

Let $G=(V, E)$ be an undirected Graph and let $w: E \rightarrow \mathbb{N}$. The goal is to find a Partition $\Pi=\left(V_{1}, V_{2}\right)$ of V, such that sum of the weights of the edges from V_{1} to V_{2} is maximized.
$■$ MAX-CUT is already NP-Hard.

Maximum Weighted Cut: Problem Statement

Let $G=(V, E)$ be an undirected Graph and let $w: E \rightarrow \mathbb{N}$. The goal is to find a Partition $\Pi=\left(V_{1}, V_{2}\right)$ of V, such that sum of the weights of the edges from V_{1} to V_{2} is maximized.
$■$ MAX-CUT is already NP-Hard.

- Assuming the Unique Games Conjecture, the following algorithm (for MAX-WCUT) is optimal.

Maximum Weighted Cut: Algorithm Outline

1 Express the problem as a Quadratic Integer Program IQP-CUT.

Maximum Weighted Cut: Algorithm Outline

1 Express the problem as a Quadratic Integer Program IQP-CUT.
2 Relax IQP-CUT into a Quadratic Programming Problem QP-CUT for analysis.

Maximum Weighted Cut: Algorithm Outline

1 Express the problem as a Quadratic Integer Program IQP-CUT.
2 Relax IQP-CUT into a Quadratic Programming Problem QP-CUT for analysis.
3 From QP-CUT derive an equivalent Semidefinite Programming Problem SD-CUT and solve this.

Maximum Weighted Cut: Algorithm Outline

1 Express the problem as a Quadratic Integer Program IQP-CUT.
2 Relax IQP-CUT into a Quadratic Programming Problem QP-CUT for analysis.
3 From QP-CUT derive an equivalent Semidefinite Programming Problem SD-CUT and solve this.
4 Use the solution obtained in the previous step to approximate a solution of the original IQP-CUT.

Maximum Weighted Cut: Constructing IQP-CUT and QP-CUT

$$
\begin{array}{rr}
\text { Maximize } & \frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-y_{i} y_{j}\right) \\
\text { constrained by } & y_{i} \in\{-1,1\} \forall i .
\end{array}
$$

Maximum Weighted Cut: Constructing IQP-CUT and QP-CUT

Maximize

$$
\begin{array}{r}
\frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-y_{i} y_{j}\right) \\
y_{i} \in\{-1,1\} \forall i .
\end{array}
$$

constrained by
Partition by $V_{1}=\left\{y_{i} \mid y_{i}=1\right\}, V_{2}=\left\{y_{i} \mid y_{i}=-1\right\}$.

Maximum Weighted Cut: Constructing IQP-CUT and QP-CUT

Maximize

$$
\begin{array}{r}
\frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-y_{i} y_{j}\right) \\
y_{i} \in\{-1,1\} \forall i .
\end{array}
$$

constrained by
Partition by $V_{1}=\left\{y_{i} \mid y_{i}=1\right\}, V_{2}=\left\{y_{i} \mid y_{i}=-1\right\}$.
Let $\mathbf{y}_{\mathbf{i}}$ denote a 2-dimensional vector on the unit sphere.
Maximize

$$
\begin{array}{r}
\frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-\mathbf{y}_{\mathbf{i}} \cdot \mathbf{y}_{\mathbf{j}}\right) \\
\left\|y_{i}\right\|=1 \tag{8}
\end{array}
$$

constrained by

Maximum Weighted Cut: Constructing IQP-CUT and QP-CUT

Maximize

$$
\begin{array}{r}
\frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-y_{i} y_{j}\right) \\
y_{i} \in\{-1,1\} \forall i .
\end{array}
$$

constrained by
Partition by $V_{1}=\left\{y_{i} \mid y_{i}=1\right\}, V_{2}=\left\{y_{i} \mid y_{i}=-1\right\}$.
Let $\mathbf{y}_{\mathbf{i}}$ denote a 2-dimensional vector on the unit sphere.
Maximize

$$
\begin{array}{r}
\frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-\mathbf{y}_{\mathbf{i}} \cdot \mathbf{y}_{\mathbf{j}}\right) \\
\left\|y_{i}\right\|=1 \tag{8}
\end{array}
$$

constrained by
Assume QP-CUT is efficiently solvable.

Maximum Weighted Cut: Randomized Rounding

Randomly choose a straight line through the origin and partition according to the side on which each vector lies on:

Maximum Weighted Cut: Analysis

■ The same can be done in higher dimensions, leading to SD-CUT:

Maximize

$$
\frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-M_{i, j}\right)
$$

constrained by
and
M is positive semidefinite

$$
M_{i, i}=1
$$

Maximum Weighted Cut: Analysis

■ The same can be done in higher dimensions, leading to SD-CUT:

$$
\begin{array}{rr}
\text { Maximize } & \frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-M_{i, j}\right) \\
\text { constrained by } & M \text { is positive semidefinite } \\
\text { and } & M_{i, i}=1 .
\end{array}
$$

■ This can be solved efficiently.

Maximum Weighted Cut: Analysis

■ The same can be done in higher dimensions, leading to SD-CUT:

Maximize

$$
\frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-M_{i, j}\right)
$$

constrained by
and
M is positive semidefinite

$$
M_{i, i}=1
$$

- This can be solved efficiently.

■ Straight forward analysis shows that this is an $0.878 \ldots$-approximation.

Summary

■ Linear Programming and Randomized Rounding are applicable to a wide variety of problems.

- Algorithms are fairly easy to understand.

■ Often leads to suprisingly efficient solutions.

Questions?

Any Questions?

FIMTII

Questions?

Any Questions?
 Thank you for your attention!

FIMTII

