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Why random/approximation?

Solve hard problems well enough.

Using only randomness is not enough: (BPP = P)?
Error bounds in deterministic approximation are often bad or hard
to estimate.
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Goals

For all instances of the problem:
Fast.

With high probability: Close to an optimal solution.
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Performance Ratio of a Randomized Algorithm

Let x be an instance of the Problem P. Let A be an algorithm for
solving P, let mA(x) denote the size of the solution produced by A on x
and let m∗(x) denote the size of an optimal solution. The performance
ratio is given by

max{sup
x∈P

m∗(x)

mA(x)
, inf

x∈P

mA(x)

m∗(x)
}. (1)

If A uses randomization: E[mA(x)]
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Boole’s inequality

Theorem (Boole’s inequality)
Let (Ai) be any countable set of events. Then

P

[⋃
i

Ai

]
≤

∑
i

P [Ai ] . (2)
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Chernoff-Bound variant

Theorem (Chernoff-Bound variant)
Let X1, . . . ,Xn be a sequence of independent Bernoulli trials, such that
P[Xi = 1] = pi and P[Xi = 0] = 1− pi . Let S be a subset of {1, . . . ,n}
and let s = |S|. Define X =

∑
i∈S Xi . Then

P
[
|X − E[X ]| >

√
4s ln s

]
≤ 1

s2 . (3)
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Linear Programming

A Linear Program is a problem of the following type:

Maximize cT x
constrained by Ax ≤ b

for c,b ∈ Qn,A ∈ Qn×n

While Linear Programs are efficiently solvable, Integer Linear
Programming (ILP) is known to be NP complete.
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Randomized Rounding

1 Rewrite the problem as an Integer Linear Program.

2 Relax the integrality requirement and compute an optimal solution
to the corresponding LP.

3 Approximate the optimal LP-solution to obtain an
integer-approximation of the ILP-solution.
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Randomized Rounding: Analysis

Let P = (A,c,b) be an ILP, let x = (x1, . . . , xn) denote the variable
vector of P and let x̂ = (x̂1, . . . , x̂n) denote a solution to the
corresponding Linear Program.

For each i = 1, . . . ,n define xi equal to 1 with probability x̂i and equal
to 0 otherwise. Let x = (x1, . . . , xn) be the corresponding vector of
random variables.
Then for any row vector a of A

E[a · x] = a · x̂.
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Lattice Approximation: Problem Statement

Let A ∈ Bn×n = {0,1}n×n be a n × n matrix with entries in {0,1} and
p ∈ [0,1]n a vector with entries in the real interval [0,1].

The goal is to find a 0-1-vector q such that ‖A · (p− q)‖∞ is minimal.
This is already stated as LP!
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Lattice Approximation: Solution step 2

min
q∈Fn

2

‖A · (p− q)‖∞

Step 2: Solve the non-integral version of the problem.

Simply choose q = p.
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Lattice Approximation: Solution step 3

min
q∈Fn

2

‖A · (p− q)‖∞

Choose q with qi = 1 with probability pi as solution.

E[Ai · q] = Ai · p
Chernoff:

P
[
|Ai · q− Ai · p| ≥

√
4n ln n

]
≤ 1

n2 .
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Lattice Approximation: Solution analysis

P
[
‖A · (q− p)‖∞ >

√
4n ln n

]
= P

[⋃
i

|Ai · q− Ai · p| >
√

4n ln n

]
≤

∑
i

P
[
|Ai · q− Ai · p| >

√
4n ln n

]
≤ 1

n
.

Thus with probability 1− 1
n we find a solution q with

‖A · (q− p)‖∞ ≤
√

4n ln n.
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MaxSAT: Problem Statement

Let I be an instance of SAT, which without loss of generality is
assumed to be in conjunctive normal form (CNF), i.e. a set C of
clauses in CNF over a set of boolean variables V .

A solution to this problem is an assignment A : V → B, such that the
number of clauses mA(I) that evaluate to true is maximal.
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MaxSAT: Solution Step 1

Clause Cj → zj with zj = 1, iff Cj evaluates to true.

Variable xi → yi with yi = 1, iff xi is set to true.
S+

j : Set of variables that appear in Cj . S−j analoguous.

Maximize
∑

j

zj

constrained by
∑

yi∈S+
j

yi +
∑

yi∈S−
j

(1− yi) ≥ zj∀j

and constrained by yi , zj ∈ {0,1}.
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MaxSAT: Solution Step 2+3

We need two algorithms:

1 Randomized Rounding. Works well for clauses with few literals:

Lemma
Let Cj be a clause with k literals. Then for the probability pj that Cj
evaluates to true, the following holds:

pj ≥ (1− (1− 1
k

)k )ẑj .

2 Assign truth values with equal probability. Works well for large
clauses:

pj ≥ (1− 1
2k ).
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MaxSAT: Solution Analysis

Have:
Randomized Rounding for small clauses.

pj ≥ (1− (1− 1
k

)k )ẑj .

Random truth assignment for large clauses.

pj ≥ (1− 1
2k ).

Simply running both algorithms and choosing the better output already
leads to a 4

3 -approximation.
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k (1− 1
2k ) (1− (1− 1

k )k )

1 1
2 1

2 3
4

3
4

≥ 3 ≥ 7
8 ≥ 1− 1

e ≥
5
8

max{m1,m2} ≥
1
2

(m1 + m2) (4)

≥
∑
k≥1

∑
cj∈Ck

αk + βk

2
ẑj (5)

≥ 3
4
·OPT (6)
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Semidefinite Programming(1)

min
x1,...,xn∈Rn

∑
i,j=1,...,n

ci,j(x i · x j)

constrained by
∑

i,j=1,...,n

ai,j,k (x i · x j) ≤ bk∀k .

Uses dot products of vectors.
Called "Semidefinite" as this may also be defined through
positive-semidefinite matrices.
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Semidefinite Programming(2)

min
x1,...,xn∈Rn

∑
i,j=1,...,n

ci,j(x i · x j)

constrained by
∑

i,j=1,...,n

ai,j,k (x i · x j) ≤ bk∀k .

There exist efficient algorithms for solving SDPs (up to an
arbitrarily small error).

Many problems may be stated as a SDP.
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Maximum Weighted Cut: Problem Statement

Let G = (V ,E) be an undirected Graph and let w : E → N. The goal is
to find a Partition Π = (V1,V2) of V , such that sum of the weights of
the edges from V1 to V2 is maximized.

MAX-CUT is already NP-Hard.
Assuming the Unique Games Conjecture, the following algorithm
(for MAX-WCUT) is optimal.

Jannis Beese (Sarntal 2012) Randomized Rounding Sept. 2012 29 / 35



Maximum Weighted Cut: Problem Statement

Let G = (V ,E) be an undirected Graph and let w : E → N. The goal is
to find a Partition Π = (V1,V2) of V , such that sum of the weights of
the edges from V1 to V2 is maximized.

MAX-CUT is already NP-Hard.

Assuming the Unique Games Conjecture, the following algorithm
(for MAX-WCUT) is optimal.

Jannis Beese (Sarntal 2012) Randomized Rounding Sept. 2012 29 / 35



Maximum Weighted Cut: Problem Statement

Let G = (V ,E) be an undirected Graph and let w : E → N. The goal is
to find a Partition Π = (V1,V2) of V , such that sum of the weights of
the edges from V1 to V2 is maximized.

MAX-CUT is already NP-Hard.
Assuming the Unique Games Conjecture, the following algorithm
(for MAX-WCUT) is optimal.

Jannis Beese (Sarntal 2012) Randomized Rounding Sept. 2012 29 / 35



Maximum Weighted Cut: Algorithm Outline

1 Express the problem as a Quadratic Integer Program IQP-CUT.

2 Relax IQP-CUT into a Quadratic Programming Problem QP-CUT
for analysis.

3 From QP-CUT derive an equivalent Semidefinite Programming
Problem SD-CUT and solve this.

4 Use the solution obtained in the previous step to approximate a
solution of the original IQP-CUT.
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Maximum Weighted Cut: Constructing IQP-CUT and
QP-CUT

Maximize
1
2

∑
(i,j)∈E

wij(1− yiyj)

constrained by yi ∈ {−1,1}∀i .

Partition by V1 = {yi |yi = 1},V2 = {yi |yi = −1}.
Let yi denote a 2-dimensional vector on the unit sphere.

Maximize
1
2

∑
(i,j)∈E

wij(1− yi · yj) (7)

constrained by ‖yi‖ = 1. (8)

Assume QP-CUT is efficiently solvable.
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Maximize
1
2

∑
(i,j)∈E

wij(1− yi · yj) (7)

constrained by ‖yi‖ = 1. (8)

Assume QP-CUT is efficiently solvable.
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Maximum Weighted Cut: Randomized Rounding

Randomly choose a straight line through the origin and partition
according to the side on which each vector lies on:
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Maximum Weighted Cut: Analysis

The same can be done in higher dimensions, leading to SD-CUT:

Maximize
1
2

∑
(i,j)∈E

wij(1−Mi,j)

constrained by M is positive semidefinite
and Mi,i = 1.

This can be solved efficiently.
Straight forward analysis shows that this is an
0.878 . . .−approximation.
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Summary

Linear Programming and Randomized Rounding are applicable to
a wide variety of problems.
Algorithms are fairly easy to understand.
Often leads to suprisingly efficient solutions.
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Questions?

Any Questions?

Thank you for your attention!
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