Constructive Proof of the Lovász Local Lemma

Ferienakademie im Sarntal - Course 1
Moderne Suchmethoden der Informatik: Trends und Potenzial

Katharina Angermeier

Naturwissenschaftliche Fakultät
FAU Erlangen-Nürnberg
26. September 2014

Outline

(1) Introduction
(2) Local Lemma in Terms of SAT - Proof and Algorithm

First Proof of Local Lemma - Existence
Second Proof of Local Lemma - Algorithm
A Stronger Variant - Conflicts
(3) Bounded Variable Degree

Small Values
(4) Linear Formulas
(5) A Sudden Jump in Complexity
(6) Open Problems

Notation and Basic Definitions

- The conjunctive normal form (CNF) is a special notation form for boolean formulas.
- Example:
$\underbrace{\left(x_{1} \vee x_{2} \vee x_{3}\right)}_{\text {clause }} \wedge(\underbrace{x_{1}}_{\text {literal }} \vee x_{3} \vee \overline{x_{4}}) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4}\right)$
This would be a 3-CNF formula with 4 clauses over the variables $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
Variables in a clause do not repeat.
- In general: a k-CNF formula $(k \in \mathbb{N})$ is a CNF formula where every clause contains exactly k literals
- An assignment α over variable set V is a mapping $\alpha: V \rightarrow\{0,1\}$ that extends to \bar{V} via $\alpha(\bar{x}):=1-\alpha(x)$ for $x \in V$

Notation and Basic Definitions

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee x_{4}\right)
$$

- A formula is called satisfiable if there is a true-false assignment to the variables so that every clause has at least one literal that evaluates to true, in this case the assignment could be $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto($ true, true, false, true $)$
- $\mathrm{vbl}(C)$ is the set of variables that occur in a clause C
- $\operatorname{vbl}(F):=\bigcup_{C \in F} \mathrm{vbl}(C)$ for F a CNF formula

Simple probabilistic argument

It takes at least 2^{k} clauses to construct an unsatisfiable k-CNF formula.
Justification: Suppose some k-CNF formula with fewer than 2^{k} clauses.
An assignment sampled uniformly at random violates each clause with probability 2^{-k}.
\Rightarrow By linearity of expectation: The expected total number of violated clauses is smaller than 1.
\Rightarrow Some of the assignments have to satisfy the whole formula.

Local constraints

The constraint on the formula size needs not only to be satisfied globally but even locally.
The neighbourhood $\Gamma(C)=\Gamma_{F}(C):=\{D \in F|v b /(D) \cap v b|(C) \neq \emptyset\}$ of a clause C is the set of clauses that share variables with C.
If we can change values in a clause C without causing too much damage in its neighbourhood, and if this property holds everywhere, then maybe we can find a globally satisfying assignment by just moving around violation issues.

If every clause in a k-CNF formula, $k \geq 1$, has a neighbourhood of size at most $2^{k} / e-1$, then the whole formula admits a satisfying assignment.
Lovász Local Lemma, 1975
Other variant:
"In an unsatisfiable CNF formula clauses have to interleave - the larger the clauses, the more interleaving is required."

Useful Definitions

- The conflict-neighbourhood $\Gamma^{\prime}(C)=\Gamma_{F}^{\prime}(C):=\{D \in F \mid C \cap \bar{D} \neq \emptyset\}$ of a clause C is the set of clauses which share variables with C, at least one with opposite sign.
- lopsided Local Lemma shows the condition for neighbourhoods holds actually for conflict-neighbourhoods
- The degree of x is the number of occurrences of a variable x (with either sign) in a CNF formula, $\operatorname{deg}(x)=\operatorname{deg}_{F}(x):=|\{C \in F \mid x \in \operatorname{vbl}(C)\}|$

Claim If every variable in a k-CNF formula, $k \geq 1$, has degree at most $2^{k} /(e k)$, then the formula is satisfiable.

Useful Definitions

For observing the quality of interleaving we define:

- A linear CNF formula is a CNF formula where any two clauses share at most one variable.
Example: $\left(\overline{y_{1}} \vee \overline{y_{2}}\right) \wedge\left(y_{1} \vee x\right) \wedge\left(y_{2} \vee x\right) \wedge\left(z_{1} \vee \bar{x}\right) \wedge\left(z_{2} \vee \bar{x}\right) \wedge\left(\overline{z_{1}} \vee \overline{z_{2}}\right)$ This is a smallest unsatisfiable linear 2-CNF formula.

Claim Any linear k-CNF formula with at most $4^{k} /\left(4 e^{2} k^{3}\right)$ clauses is satisfiable.

Algorithms

- Whenever the easily checkable conditions formulated above are satisfied, then the algorithmic problem of deciding satisfiability becomes trivial.
- The actual construction of a satisfying assignment is by no means obvious.
- Define $f(k), k \in \mathbb{N}$, as the largest integer so that every k-CNF formula with no variable of degree exceeding $f(k)$ is satisfiable.
- $f(k)=\Theta\left(2^{k} / k\right)$
- For k-CNF formulas $(k \geq 3)$ with max-degree at most $f(k)+1$ the satisfiability problem becomes NP-complete.
- $I(k)$ is defined as the largest integer d such that every k-CNF formula F for which $\left|\Gamma_{F}(C)\right| \leq d$, for all $C \in F$, is satisfiable.
- $I C(k)$ is defined analogously, but with $\left|\Gamma_{F}^{\prime}(C)\right| \leq d$.

Hypergraphs

- A hypergraph H is a pair (V, E) with V a finite set and $E \subseteq 2^{V}$.
- It is k-uniform if $|e|=k$ for all $e \in E$.
- H is called 2-colourable if there is a colouring of the vertices in V by two colors red and green so that no hyperedge in E is monochromatic.
- Relation to satisfiablility of CNF formulas: $H=(V, E)$ is 2-colourable iff the CNF formula $E \cup\{\bar{e} \mid e \in E\}$, with V now considered as set of boolean variables, is satisfiable.

$$
\begin{gathered}
\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{7}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{7}}\right) \wedge \\
\left(x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(\overline{x_{4}} \vee \overline{x_{5}} \vee \overline{x_{6}}\right)
\end{gathered}
$$

Local Lemma in Terms of SAT - Proof and Algorithm

Theorem 1 Let $k \in \mathbb{N}$ and let F be a k-CNF formula. If $|\Gamma(C)| \leq 2^{k} / e-1$ for all $C \in F$, then F is satisfiable.
P. Erdős, L. Lovász: Problems and results on 3-chromatic hypergraphs and some related questions.

History of Theorem 1

1975 "existential" proof : short but non-constructive
1991 Beck proved the existence of a polynomial-time algorithm to find a satisfying assignment for all $C \in F, F$ a k-CNF formula $\Gamma(C) \leq 2^{k / 48}$.
1991 Alan simplified Beck's algorithm by randomness, and presented an algorithm that works for neighbourhoods of size up to $2^{k / 8}$.

2000 Czumaj and Scheideler demonstrated that a variant of the method can be made to work for the case where clauses sizes vary.
2008 Srinivasan improved the time to essentially $2^{k / 4}$.
2008 Moser published an polynomial-time algorithm for neighbourhood sizes up to $O\left(2^{k / 2}\right)$, later for 2^{k-5} neighbours.
2009 Moser and Tardos published a fully constructive proof.

$k=1$	p
\emptyset	1
x_{1}	$\frac{1}{2}$
$x_{1} \wedge x_{2}$	$\frac{1}{4}$
$x_{1} \wedge x_{2} \wedge x_{3}$	$\frac{1}{8}$
$x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4}$	$\frac{1}{16}$

$k=2$	p
\emptyset	1
$\left(x_{1} \vee x_{2}\right)$	$\frac{3}{4}$
$\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)$	$\frac{9}{16}$
$\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right)$	$\frac{21}{64}$

First Proof of Local Lemma - Existence

- F k-CNF formula, neighbourhood size at most $d:=\frac{2^{k}}{e}-1$
- If the probability of a random assignment α to satisfy F is positive, F is satisfiable.
- $F^{\prime} \subset F$ subformula of F with one fewer clause, $C \in F \backslash F^{\prime}$ one of the clauses removed
- α has probability $\operatorname{Pr}\left(F^{\prime}\right)$ of satisfying F^{\prime}
- We want to compute the drop in probability when adding back C.

Claim: the factor is bounded by $\left(1-e 2^{-k}\right)$, which means $\operatorname{Pr}\left(F^{\prime} \wedge C\right) \geq\left(1-e 2^{-k}\right) \operatorname{Pr}\left(F^{\prime}\right)$.

- If the factor is positive, the claim is proved.

Induction

- Suppose the latter claim has been proved for all subformulas F^{\prime} up to a given size.
- trivial special case: If C is independent from F^{\prime}, the probability decreases by a factor of exactly $\left(1-2^{-k}\right)$.
- Otherwise we remove all clauses of F^{\prime} neighbouring C and get $F^{\prime \prime}:=F^{\prime} \backslash \Gamma(C)$
- $\Rightarrow \operatorname{Pr}\left(F^{\prime \prime} \wedge \neg C\right)=2^{-k} \operatorname{Pr}\left(F^{\prime \prime}\right)$
- By adding back all clauses one by one to $F^{\prime \prime}$ to get F^{\prime} we obtain $\operatorname{Pr}\left(F^{\prime}\right) \geq\left(1-e 2^{-k}\right)^{d} \operatorname{Pr}\left(F^{\prime \prime}\right) \geq e^{-1} \operatorname{Pr}\left(F^{\prime \prime}\right)$ $\operatorname{Pr}\left(F^{\prime} \wedge \neg C\right) \leq \operatorname{Pr}\left(F^{\prime \prime} \wedge \neg C\right)=2^{-k} \operatorname{Pr}\left(F^{\prime \prime}\right)$

$$
\Rightarrow \frac{\operatorname{Pr}\left(F^{\prime} \wedge \neg C\right)}{\operatorname{Pr}\left(F^{\prime}\right)} \leq \frac{2^{-k}}{e^{-1}}
$$

Second Proof of Local Lemma - Algorithm

- Algorithm: We repeatedly select any of the violated clauses and just select new uniformly random variables occurring in that clause until a satisfying assignment is obtained.
Analysis:
- We record a log of corrections with the mapping $L: \mathbb{N}_{0} \rightarrow F$
- Let $N: F \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ be random variables that count the number of times a given clause occurs in the log.
- We prove now that for each clause $C \in F$ the expected value $E[N(C)]$ is upper bounded by a constant.
- To continue we introduce witness trees. A witness tree is an unordered, rooted tree T along with a labelling $\sigma: V(T) \rightarrow F$ of its vertices $V(T)$ by clauses from F.
- We label the root vertex $r \sigma(r):=L(t)$.
- Now we traverse the log backwards and for each time step $s=t-1, t-2, \ldots, 0$, check if the clause $L(s)$ has any variables that it shares with any of the labels in the tree built so far.
- If $L(s)$ is independent from all clauses currently serving as labels, discard it.
Otherwise select any deepest of the nodes the tree has in common with $L(s)$ and create a new child node of it, labelling that new child $L(s)$
- When arriving at $s=0$ we have built a witness tree $T(t)$ that justifies correction step t.
- By traversing $T(t)$ in a breadth-first-search that starts at the root we obtain a sequence of clauses that is a subsegment of the execution log.
- The way we defined $T(t)$ assures two things:
(a) The ordering in which the corrections have taken place is similar to the ordering in which we traverse the nodes.
(b) When we traverse some node v representing correction step t, then all correction steps $t^{\prime}<t$ that relate to step t do occur in the tree and have therefore been traversed before.
\Rightarrow The number of times some variable x has occurred so far in labelling clauses corresponds to the number of times x has been reassigned new values before the corresponding correction step.
- What about when you have given a fixed witness tree T ?
- We can reconstruct k of the random bits the algorithm has used.
- If the tree has n vertices, we can reconstruct $n k$ bits in total.
- The probability that T can be constructed is exactly $2^{-n k}$.
- For a fixed clause $C \in F$, number n we want the number of witness trees of order n which have C as the label of their root vertex.
- We embed each witness tree rooted at label C into an infinite tree that just enumerates neighbouring nodes.
- Consider an infinite tree with its root labelled C and such that each node v labelled $\sigma(v)$ has $|\Gamma(\sigma(v))|$ children labelled $\Gamma(\sigma(v))$.
- An infinite rooted $(\leq d)$-ary tree has at most $(e d)^{n}$ subtrees of size n. \Rightarrow There are at most $(e d)^{n}$ witness trees of order n that have C as their root label.
- The expected number of witness trees of size n that can occur is bounded by $\left(e d 2^{-k}\right)^{n}$.
- Summing over all possible sizes $n \geq 1$ this becomes a geometric series that converges to a constant.
\Rightarrow There is at most a constant expected number of valid witness trees rooted at C.
- For each of the $N(C)$ times a clause C occurs in the execution log we can ask for a corresponding witness tree to justify that correction step.
- $N(C)$ is at most as large as the number of valid witness trees rooted at C, which is bounded by a constant in expectation. \square

A Stronger Variant - Conflicts

Theorem 3 Let $k \in \mathbb{N}$ and let F be a k-CNF formula. If
$\left|\Gamma^{\prime}(C)\right| \leq 2^{k} / e-1$ for all $C \in F$, then F is satisfiable.

- Berman, Karpinski and Scott have demonstrated using the lopsided Local Lemma, that every 6-, 7-, 8- or 9-CNF formula in which every variable occurs at most $7,13,23$ or 41 times, respectively, is satisfiable.

Bounded Variable Degree

- A k-CNF formula in which no variable occurs in more than d clauses is called a (k, d)-CNF formula.
- $f(k)$ is now defined as the unique integer so that all $(k, f(k))$-CNF formulas are satisfiable.
- $0 \leq f(k) \leq 2^{k}$
- Tovey was the first to consider $f(k)$ in 1984
- He showed $f(k) \geq k$ and conjectured that all $\left(k, 2^{k-1}-1\right)$-CNF formulas are satisfiable.
- $k(d-1) \leq 2^{k} / e-1$ implies that every (k, d)-CNF formula is satisfiable
- Kratochvíl, Savický and Tuza established 1993 that and the bounds of $f(k) \geq\left\lfloor 2^{k} /(e k)\right\rfloor$ and $f(k) \leq 2^{k-1}-2^{k-4}-1$
- Savický and Sgall showed $f(k)=O\left(k^{-0.26} 2^{k}\right)$ (2000), Hoory and Szeider improved it to $f(k)=O\left(\left(2^{k} \log k\right) / k\right)$ (2006). Recently Gebauer settled $f(k)=\Theta\left(2^{k} / k\right)$

Theorem 4 For k a large enough integer,

$$
\left\lfloor 2^{k} / e k\right\rfloor \leq f(k)<2^{k+1} / k
$$

If k is a sufficiently large power of 2 we have $f(k)<2^{k} / k$.

- Proof of the upper bound with a Combinatorial game:
- Maker wants to completely occupy a hyperedge and Breaker tries to prevent this.
- The problem is to find the minimum $d=d(k)$ such that there is a k-uniform hypergraph of maximum vertex degree d where Maker has a winning strategy.
- If the Maker uses a pairing strategy, this game is equivalent to unsatisfiability.
- A hypergraph H, pairing P can be interpreted as a CNF formula F where the hyperedges of H are clauses and two vertices of a pair of P are complementary literals.
- Maker wins the game on H using the pairing strategy according to P if and only if F is unsatisfiable.

If there is a k-uniform hypergraph of maximum vertex degree d with a winning pairing strategy for Maker, then there is an unsatisfiable (k,2d) - CNF formula.

Small Values

Lemma Let F be a minimal unsatisfiable CNF formula. Consider x and $C \in F$ with $x \in \operatorname{vbl}(C)$. Then there is a clause D with the property that x is the unique variable that appears in C and D with opposite signs.

Proof. F is minimal $\Rightarrow F \backslash\{C\}$ has satisfying assignment α. α cannot satisfy C, because F is assumpted to be unsatisfiable. We switch the value of x to satisfy C.
Now some other clause $D \in F$ is violated.
$\Rightarrow D$ serves the purpose

Lemma 3 (1) $f(k) \geq k$ for $k \geq 1$ and (2) $I(k) \geq I c(k) \geq k$ for $k \geq 2$

- $k \geq 1, F$ a k-CNF formula over a variable set V, no variable occurring in more than k clauses.
- Consider the incidence graph between clauses and variables.
- Hall's condition for a matching covering all clause-vertices holds.
- An assignment is now defined by letting every variable x that is matched to a clause C map to the value so that it satisfies C.
- The matching property prevents conflicts and no matter how we complete the assignment for unmatched variables it will satisfy all clauses. \Rightarrow (1)
(2) I $(k) \geq I c(k) \geq k$ for $k \geq 2$
- Let $k \geq 2$. We will actually prove $I c(k) \geq\lceil(f(k)+1) / 2\rceil+k-2$. This yields $\lceil(3 k-3) / 2 \geq k\rceil$.
- This means we have to show that every unsatisfiable k-CNF formula F contains a clause C with $\left|\Gamma^{\prime}(C)\right| \geq\lceil(f(k)+1) / 2\rceil+k-1$.
- Minimal unsatisfiable k-CNF formula $G \subseteq F$. G has variable x with $\operatorname{deg}_{G}(x) \geq f(k)+1$, w.l. o. g. we assume \bar{x} occurs at least $\lceil(f(k)+1) / 2\rceil$ times.
- We choose $C \in G$ with literal $x \cdot \Gamma_{G}^{\prime}(C)$ contains all clauses with \bar{x}.
- $\forall z \in C \backslash\{x\} \exists D_{z} \in G: z$ is the unique variable that appears in C and D_{z} with opposite signs.
- $\Rightarrow\left|\Gamma_{G}^{\prime}(C)\right| \geq\lceil(f(k)+1) / 2\rceil+k-1$
- With $\Gamma_{F}^{\prime}(C) \supseteq \Gamma_{G}^{\prime}(C)$ this concludes the argument.
- $f(k)=k$ is known for $k \leq 4$, the best known bounds for $k=5$ are $5 \leq f(5) \leq 7$.
- $k=6$ is the first value for which the bound in Lemma 3(1) is known not to be tight: $7 \leq f(6) \leq 11$.

Linear Formulas

- A CNF formula F is linear if $|v b l(C) \cap v b l(D)| \leq 1, \quad C, D \in F, C \neq D$
- A hypergraph $H=(V, E)$ is linear if $|e \cap f| \leq 1$ for any two distinct edges $e, f \in E$.
- Given a k-uniform non-2-colorable hypergraph H with m hyperedges, we immediately obtain an unsatisfiable k-CNF formula $F(H)$ with $2 m$ clauses

Linear Formulas

- Let $f_{\text {lin }}(k)$ be the largest integer so that every linear $\left(k, f_{\text {lin }}(k)\right)$-CNF formula is satisfiable. $f_{\text {lin }} \geq f(k) \geq\left\lfloor 2^{k} /(e k)\right\rfloor$

Theorem 6 Any unsatisfiable linear k-CNF formula has at least

$$
\frac{1}{k}\left(1+f_{\text {lin }}(k-1)\right)^{2}>\frac{4^{k}}{4 e^{2} k^{3}}
$$

clauses. There exists an unsatisfiable linear k-CNF formula with at most $8 k^{3} 4^{k}$ clauses.
Remark. $\frac{1}{k}\left(1+f_{\text {lin }}(k-1)^{2}\right) \leq 8 k^{3} 4^{k}$ follows thus $f_{\text {lin }}(k-1) \in O\left(k^{2} 2^{k}\right)$.
Proof. Similar to the proof for the size of non-2-colourable linear k-uniform hypergraphs in "Problems and results on 3-chromatic hypergraphs and some related questions" (Erdős, Lovász).

Lemma 5 Let F be a linear k-CNF formula. If there are at most $f_{\text {lin }}(k-1)$ variables of degree exceeding $f_{\text {lin }}(k-1)$, then F is satisfiable.
Let X be the set of variables x with $\operatorname{deg}_{F}(x)>f_{\text {lin }}(k-1)$. If F is unsatisfiable $|X|>f_{\text {lin }}(k-1)$. Therefore the lower bound follows from

$$
|F|=\sum_{x \in v b l(F)} \operatorname{deg}_{F}(x) \geq \frac{1}{k}\left(1+f_{\text {lin }}(k-1)\right)|X| \geq \frac{1}{k}\left(1+f_{\text {lin }}(k-1)\right)^{2}
$$

Proof of Lemma 5

- For a literal u let $\operatorname{deg}_{F}(u)$ be the degree of the variable underlying u in F.
- First we construct a linear $(k-1)$-CNF formula F^{\prime} as follows:
- For every clause $C \in F$, let u_{C} be a literal of C that maximises $\operatorname{deg}_{F}\left(u_{C}\right)$. We write $C^{\prime}:=C \backslash\left\{u_{C}\right\}, F^{\prime}:=\left\{C^{\prime} \mid C \in F\right\}$
- We claim that $\operatorname{deg}_{F^{\prime}}(x) \leq f_{\text {lin }}(k-1)$ for all variables x, thus F^{\prime} and therefore F is satisfiable
- Consider a variable x. Clearly $\operatorname{deg}_{F^{\prime}}(x) \leq \operatorname{deg}_{F}(x)$ and so if $\operatorname{deg}_{F}(x) \leq f_{\text {lin }}(k-1)$ we are done.
- Otherwise let $C_{1}^{\prime}, \ldots, C_{t}^{\prime}, t=\operatorname{deg}_{F^{\prime}}(x)$ be clauses in F^{\prime} containing x or \bar{x}. There are clauses C_{i}, \ldots, C_{t} in F such that $C_{i}^{\prime}=C_{i} \backslash\left\{u_{C_{i}}\right\}$, $1 \leq i \leq t$.
- By choice of $u_{C_{i}}, \operatorname{deg}_{F}\left(u_{C_{i}}\right) \geq \operatorname{deg}_{F}(x)>f_{\text {lin }}(k-1)$. Since F is linear, the $u_{C_{i}}$'s have to be distinct, thus $t \leq f_{\text {lin }}(k-1)$

Proof of the upper bound: There exists an unsatisfiable linear k-CNF formula with at most $8 k^{3} 4^{k}$ clauses.

- Take a linear k-uniform hypergraph $H=(V, E)$ with n vertices and m edges.
- We now replace each literal in each clause by its complement with probability $\frac{1}{2}$, independently on each clause. Let F denote the resulting (random) formula.
- Any fixed assignment α has a $1-2^{-k}$ chance of satisfying a given clause of F, and thus:
$\operatorname{Pr}[[] \alpha$ satisfies $F]=\left(1-2^{-k}\right)^{m} \leq e^{-m 2^{-k}}$
There are 2^{n} distinct assignments, hence by the union bound $\operatorname{Pr}[[]$ some $\quad \alpha$ satisfies $F]<2^{n} e^{-m 2^{-k}}=c^{\ln (2) n-m 2^{-k}}$
- If $\frac{m}{n} \geq \ln (2) 2^{k}$, the second expression is at most 1 ,
\Rightarrow with positive probability no assignment satisfies F.
- We construct a linear k-uniform hypergraph with few hyperedges, but with a large hyperedge-vertex ratio. Let $q \in\{k, \ldots, 2 k\}$ be a prime power.
- Choose $d \in \mathbb{N}$ such that $q^{2} \ln (2) 2^{k} \leq q^{d}<q^{3} \ln (2) 2^{k}$ and set $n:=q^{d}$.
- Consider the d-dimensional vector space \mathbb{F}_{q}^{d}. By choice of d we have $n \ln (2) 2^{k} \leq \frac{n^{2}}{q^{2}}$, hence we can choose $m:=n \ln (2) 2^{k}$ distinct lines in \mathbb{F}_{q}^{d}.
- Form each such line arbitrarily select k points and form a hyperedge.
- Let E be the set of all m hyperedges formed this way. Thus, $H=\left(\mathbb{F}_{q}^{d}, E\right)$ is a k-uniform hypergraph. It is a linear hypergraph, since any pair of distinct lines intersect in at most one point.
- By construction, $\frac{m}{n}=\ln (2) 2^{k}$, and $m=n \ln (2) 2^{k} \leq q^{3} \ln (2)^{2} 4^{k} \leq \ln (2)^{2} 8 k^{3} 4^{k}$, which proves the upper bound. \square

A Sudden Jump in Complexity

- Tovey (1984): For 3-CNF formulas with maximum variable degree $f(3)+1=4$ satisfiability is NP-complete.
- Kratochvíl, Savický and Tuza (1993) generalised this sudden jump: For every fixed $k \geq 3$, satisfiability of $(k, f(k)+1)$-CNF formulas is NP-complete.
- Berman, Karpinski and Scott (2003) showed that for $(k, f(k)+1)$-CNF formulas it is even hard to approximate the maximum number of clauses that can be simultaneously satisfied

Theorem 9 Let $k \geq 3$. Then, (1) deciding satisfiability of k-CNF formulas with variable degrees at most $f(k)+1$ is NP-complete
(2) deciding satisfiability of k-CNF formulas with clause neighbourhoods of size at most max $\{k+3, I(k)+2\}$ is NP-complete (3) deciding satisfiability of k-CNF formulas with clause conflict-neighbourhoods of size at most $l c(k)+1$ is NP-complete

General contruction of \hat{F} for F so that \hat{F} is satisfiable iff F is satisfiable

- For a set of $j \geq 2$ variables, $U=\left\{x_{0}, x_{1}, \ldots, x_{j-1}\right\}$, the 2 -CNF formula

$$
\left\{\left\{x_{0}, \overline{x_{1}}\right\},\left\{x_{1}, \overline{x_{2}}\right\}, \ldots,\left\{x_{j-2}, \overline{x_{j-1}}\right\},\left\{x_{j-1}, \overline{x_{0}}\right\}\right\}
$$

is called an equaliser of U.

- Let F be a k-CNF formula, $k \geq 3$. For each variable $x \in v b /(F)$, we replace every occurrence by a new variable inheriting the sign of x in this occurrence.
- This yields a k-CNF formula F^{\prime} with $|F|$ clauses over a set of $k|F|$ variables.
- For each $x \in v b /(F)$ we add an equaliser for the set of variables that have replaced occurrences of x.
- This gives a set $F^{\prime \prime}$ of at most $k|F|$ 2-clauses.
- $\hat{F}:=F^{\prime} \cup F^{\prime \prime}$ is satisfiable iff F is satisfiable.
- every variable of $\operatorname{vbl}(\hat{F})$ occurs at most 3 times in \hat{F}
- each k-clause in F^{\prime} does not share variables with any other clause in F^{\prime} and the number of its neighbouring 2-clauses in $F^{\prime \prime}$ is at most $2 k$; at most k of the 2-clauses are in the conflict-neighbourhood
- each 2-clause in $F^{\prime \prime}$ neighbours two k-clauses in F^{\prime} and at most two 2-clauses in $F^{\prime \prime}$

Proof of (1) (variable degrees)

- Let $k \geq 3$ and fix some minimal unsatisfiable $(k, f(k)+1)$-CNF formula G.
- Choose some clause C in G and replace one of its literals by \bar{x} for a new variable x to get $G(x)$.
- $G(x)$ is satisfiable, every satisfying assignment has to set x to 0 , all variables have degree at most $f(k)+1$ and $\operatorname{deg}_{G(x)}(x)=1$
- Given a k-CNF formula F we first generate \hat{F}. Then we augment each 2-clause in \hat{F} by $(k-2)$ positive literals of new variables so that it becomes a k-clause.
- For each new variable x we add a copy of $G(x)$ to our formula. By renaming variables in G these copies are chosen so that their variable sets are pairwise disjoint.
- The new formula is satisfiable iff \hat{F} is satisfiable.
- The maximum variable degree is $\max \{3, f(k)+1\}$, which is $f(k)+1$
- This constitutes a polynomial reduction of satisfiability of general k-CNF formulas to satisfiability of k-CNF formulas with maximum variable degree $f(k)+1$. \square

Proof of (2) (neighbourhoods)

- Let $k \geq 3$. Fix some minimal unsatisfiable $k-C N F$ formula G where all neighbourhoods have size at most $l(k)+1$.
- We choose some clause C and replace one of its lieterals by \bar{x} for a new variable x, resulting in a k-CNF formula $G(x)$ that forces x to 0 in every satisfying assignment.
- Starting from a 3-CNF formula F we proceed as before:
- We produce \hat{F} consisting of 3- and 2-clauses, we augment all clauses to k-clauses with disjoint copies of $G(x)$ for each new variable x.
- A 3-clause in F^{\prime} had 6 neighbours in \hat{F} and gained $k-3$ new neighbours, so there are at most $k+3$.
- A 2-clause had 4 neighbours and gets an extra neighbour for each of the $k-2$ new literals, which makes $k+2$ neighbours.
- In a copy $G(x)$ all clauses stay with a neighbourhood of size at most $I(k)+1$ except for the special clause C where we have planted the new literal \bar{x}. This clause may now have $I(k)+2$ neighbours.
- \Rightarrow bound of $\max \{k+3, I(k)+2\}$ and the polynomial reduction from satisfiability of general 3-CNF formulas is completed.
- Given a variable set $U=\left\{x_{0}, x_{1}, \ldots, x_{j-1}\right\}, j \geq 2$, let $W=\left\{z_{0}, z_{1}, \ldots, z_{j-1}\right\}$ be a set of variables disjoint from U. The $(U \cup W)$-equaliser $\left\{\left\{x_{0}, \overline{z_{0}}\right\},\left\{z_{0}, \overline{x_{1}}\right\},\left\{x_{1}, \overline{z_{1}}\right\},\left\{z_{1}, \overline{x_{2}}\right\}, \ldots\right.$, $\left.\left\{z_{j-2}, \overline{x_{j-1}}\right\},\left\{x_{j-1}, \overline{z_{j-1}}\right\},\left\{z_{j-1}, \overline{x_{0}}\right\}\right\}$
is called a stretched equaliser of U.
- the 2-clauses in stretched equalisers have a conflict with two other 2-clauses but to at most one of the k-clauses in F^{\prime}

Proof of (3) (conflict-neighbourhoods)

- $k \geq 3$, fix minimal unsatisfiable k-CNF formula G with conflict-neighbourhood size at most $l c(k)+1$
- Recall from Lemma 4: G must have a pair of clauses C and D which share a unique variable, say y, in a conflicting manner.
- Choose a new variable x and replace y in C by \bar{x}. This the building block $G(x)$ forcing x to be 0 . The clause C^{\prime} containing \bar{x} has a conflict-neighbourhood of size at most $l c(k)$.
- Given F, a k-CNF formula, we move on to \hat{F} and then expand 2-clauses with the help of new variables that are forced to 0 by disjoint copies of $G(x)$.
- In the final product k-clauses in F^{\prime} have at most k conflict-neighbours, k-clauses obtained from augmenting 2-clauses have at most $3+(k-2)=k+1$ conflict-neighbours, and clauses in copies of $G(x)$ have conflict-neighbourhoods of size at most $l c(k+1)$.
- The maximum size of a conflict neighbourhood is $\max \{k+1, I c(k)+1\}$ which equals $I c(k)+1$. \square

Open Problems

Open Problem 1. Is it possible to improve any of the known lower bounds on $f(k), I(k)$, and $I c(k)$ by a constant factor?
Open Problem 2. Is there a constant $c_{0}>1$ with $f(k) \geq c_{0} l(k) / k$ for k large enough?
Open Problem 3. Is there a constant $c_{1}>1$ such that $l(k) \geq c_{1} / c(k)$ for k large enough?
Open Problem 4. Are the functions $f(k), I(k)$ and $I c(k)$ computable?

Thank you!

© 2011 Seth Black

