The Knapsackproblem

Ferienakademie im Sarntal — Kurs 1 Moderne Suchmethoden der Informatik

Florian Pawlik

Fakultät für Informatik TU München

23. September 2014

Inhalt

1 Einführung Notationen

2 Algorithmen

greedy Algorithmus PTAS DIST PTAS MOD-SKP FPTAS KP

3 Verwendung

FPTAS KP

Notationen

"Knapsackproblem" (KP)

• Was ist das Rucksackproblem?

Notationen

"Knapsackproblem" (KP)

• Was ist das Rucksackproblem?

"simple Knapsackproblem" (SKP)

Was ist das SKP?

Begrifflichkeiten

Was ist PTAS?

Begrifflichkeiten

- Was ist PTAS?
- Was ist FPTAS?

Algorithmus 1

Input: Positive Integer $w_1, w_2, ..., w_n, b$ für ein bestimmtes $n \in \mathbb{N}$.

Algorithmus 1

Input: Positive Integer $w_1, w_2, ..., w_n, b$ für ein bestimmtes $n \in \mathbb{N}$.

Schritt 1: Sortiere w_1 bis w_n nach Größe, sodass $w_1 \ge w_2 \ge ... \ge w_n$ gilt.

Algorithmus 1

Input: Positive Integer $w_1, w_2, ..., w_n, b$ für ein bestimmtes $n \in \mathbb{N}$.

Schritt 1: Sortiere w_1 bis w_n nach Größe, sodass $w_1 \ge w_2 \ge ... \ge w_n$ gilt.

Schritt 2: $T := \emptyset$; $cost_T := 0$

Algorithmus 1

```
Input: Positive Integer w_1, w_2, ..., w_n, b für ein bestimmtes n \in \mathbb{N}. Schritt 1: Sortiere w_1 bis w_n nach Größe, sodass w_1 \geq w_2 \geq ... \geq w_n gilt. Schritt 2: T := \emptyset; cost_T := 0 Schritt 3: for i=1 to n do

if cost_T + w_i < b then

do begin T := T \cup \{i\};
cost_T := cost_T + w_i;
end
```

Algorithmus 1

```
Input: Positive Integer w_1, w_2, ..., w_n, b für ein bestimmtes n \in \mathbb{N}.
Schritt 1: Sortiere w_1 bis w_n nach Größe, sodass w_1 > w_2 > ... > w_n
            gilt.
Schritt 2: T := \emptyset; cost_T := 0
Schritt 3: for i=1 to n do
                   if cost_T + w_i < b then
                           do begin T := T \cup \{i\};
                                       cost\tau := cost\tau + w_i;
                           end
 Output: T
```

ObdA gilt $b \ge w_1 \ge w_2 \ge ... \ge w_n$.

Fall 1:
$$j = 1$$
: $w_1 + w_2 > b$.

Fall 1:
$$j = 1$$
: $w_1 + w_2 > b$.

$$\Rightarrow cost_T \ge w_1 > \frac{b}{2}.$$

Fall 1:
$$j = 1$$
: $w_1 + w_2 > b$.

$$\Rightarrow cost_T \ge w_1 > \frac{b}{2}.$$

Fall 2:
$$j \ge 2$$
:

Fall 1:
$$j = 1$$
: $w_1 + w_2 > b$.
 $\Rightarrow cost_T \ge w_1 > \frac{b}{2}$.

Fall 2:
$$j \ge 2$$
: $cost_T + w_{j+1} > b \ge OPT_{SKP}(w_1, ..., w_n, b)$.

Fall 1:
$$j = 1$$
: $w_1 + w_2 > b$.

$$\Rightarrow cost_T \ge w_1 > \frac{b}{2}.$$

Fall 2:
$$j \ge 2$$
: $cost_T + w_{j+1} > b \ge OPT_{SKP}(w_1, ..., w_n, b)$.
Wegen $w_1 \ge w_2 \ge ... \ge w_n$ gilt:
 $w_{j+1} \le w_j \le \frac{w_1 + w_2 + ... + w_j}{j} \le \frac{b}{j}$.

Fall 1:
$$j = 1$$
: $w_1 + w_2 > b$.

$$\Rightarrow cost_T \ge w_1 > \frac{b}{2}.$$

Fall 2:
$$j \ge 2$$
: $cost_T + w_{j+1} > b \ge OPT_{SKP}(w_1, ..., w_n, b)$.
Wegen $w_1 \ge w_2 \ge ... \ge w_n$ gilt:
 $w_{j+1} \le w_j \le \frac{w_1 + w_2 + ... + w_j}{j} \le \frac{b}{j}$.
 $\Rightarrow cost_T > b - w_{j+1} \ge b - \frac{b}{j} \ge \frac{b}{2}$ für $j \ge 2$

ObdA gilt $b \ge w_1 \ge w_2 \ge ... \ge w_n$. Sei j+1 als erster Index nicht in T. Dabei ist $j \ge 1$, da $w_1 \le b$ und damit $1 \in T$.

Fall 1:
$$j = 1$$
: $w_1 + w_2 > b$.

$$\Rightarrow cost_T \ge w_1 > \frac{b}{2}.$$

Fall 2:
$$j \ge 2$$
: $cost_T + w_{j+1} > b \ge OPT_{SKP}(w_1, ..., w_n, b)$.
Wegen $w_1 \ge w_2 \ge ... \ge w_n$ gilt:
 $w_{j+1} \le w_j \le \frac{w_1 + w_2 + ... + w_j}{j} \le \frac{b}{j}$.
 $\Rightarrow cost_T > b - w_{j+1} \ge b - \frac{b}{j} \ge \frac{b}{2}$ für $j \ge 2$

 \Rightarrow Es ist eine 2-Approximation.

ObdA gilt $b > w_1 > w_2 > ... > w_n$. Sei j+1 als erster Index nicht in T. Dabei ist $j \geq 1$, da $w_1 \leq b$ und damit $1 \in T$.

Fall 1:
$$j = 1$$
: $w_1 + w_2 > b$.

$$\Rightarrow cost_T \ge w_1 > \frac{b}{2}.$$

Fall 2:
$$j \ge 2$$
: $cost_T + w_{j+1} > b \ge OPT_{SKP}(w_1, ..., w_n, b)$.
Wegen $w_1 \ge w_2 \ge ... \ge w_n$ gilt:
 $w_{j+1} \le w_j \le \frac{w_1 + w_2 + ... + w_j}{j} \le \frac{b}{j}$.
 $\Rightarrow cost_T > b - w_{j+1} \ge b - \frac{b}{j} \ge \frac{b}{2}$ für $j \ge 2$

 \Rightarrow Es ist eine 2-Approximation.

Idee für PTAS

 $T_{OPT} = \{i_1, i_2, ..., i_r\}$ mit $w_{i_1} \ge w_{i_2} \ge ... \ge w_{i_r}$ ist eine optimale Lösung für ein SKP.

Idee für PTAS

 $T_{OPT} = \{i_1, i_2, ..., i_r\}$ mit $w_{i_1} \ge w_{i_2} \ge ... \ge w_{i_r}$ ist eine optimale Lösung für ein SKP.

Angenommen Lösung T enthält j höchsten Gewichte von T_{OPT} und $cost_T + w_{i_{j+1}} > b$.

Idee für PTAS

 $T_{OPT} = \{i_1, i_2, ..., i_r\}$ mit $w_{i_1} \ge w_{i_2} \ge ... \ge w_{i_r}$ ist eine optimale Lösung für ein SKP.

Angenommen Lösung T enthält j höchsten Gewichte von T_{OPT} und $cost_T + w_{i_{j+1}} > b$.

Dann gilt:

$$cost(T_{OPT}) - cost_T \le w_{i_{j+1}} \le \frac{b}{i_{j+1} - 1} \le \frac{b}{j}$$



Algorithmus 2

Input: Positive Integer $w_1, w_2, ..., w_n, b$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}$ mit $0 < \epsilon < 1$.

Algorithmus 2

Input: Positive Integer $w_1, w_2, ..., w_n, b$ für ein bestimmtes $n \in \mathbb{N}$,

 $\epsilon \in \mathbb{R} \text{ mit } 0 < \epsilon < 1.$

Schritt 1: Sortiere w_1 bis w_n nach Größe, sodass $w_1 \ge w_2 \ge ... \ge w_n$ gilt.

Algorithmus 2

Input: Positive Integer $w_1, w_2, ..., w_n, b$ für ein bestimmtes $n \in \mathbb{N}$,

 $\epsilon \in \mathbb{R} \text{ mit } 0 < \epsilon < 1.$

Schritt 1: Sortiere w_1 bis w_n nach Größe, sodass $w_1 \ge w_2 \ge ... \ge w_n$

gilt.

Schritt 2: $k := \left\lceil \frac{1}{\epsilon} \right\rceil$.

Algorithmus 2

- Input: Positive Integer $w_1, w_2, ..., w_n, b$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}$ mit $0 < \epsilon < 1$.
- Schritt 1: Sortiere w_1 bis w_n nach Größe, sodass $w_1 \ge w_2 \ge ... \ge w_n$ gilt.
- Schritt 2: $k := \left\lceil \frac{1}{\epsilon} \right\rceil$.
- Schritt 3: Für jede Untermenge $S \subseteq \{1, 2, ..., n\}$ mit $|S| \le k$ und $\sum_{i \in S} w_i \le b$, erweitere S zu S^* durch Schritt 3 von Algorithmus 1(Greedy). Speichere das momentan teuerste S^* .

Algorithmus 2

- Input: Positive Integer $w_1, w_2, ..., w_n, b$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}$ mit $0 < \epsilon < 1$.
- Schritt 1: Sortiere w_1 bis w_n nach Größe, sodass $w_1 \ge w_2 \ge ... \ge w_n$ gilt.
- Schritt 2: $k := \left\lceil \frac{1}{\epsilon} \right\rceil$.
- Schritt 3: Für jede Untermenge $S \subseteq \{1,2,...,n\}$ mit $|S| \le k$ und $\sum_{i \in S} w_i \le b$, erweitere S zu S^* durch Schritt 3 von Algorithmus 1(Greedy). Speichere das momentan teuerste S^* .
 - Output: S^* mit einem Maximum von $cost_{S^*}$ aus allen in Schritt 3 gebildeten Mengen.

Algoithmus 2 ist ein PTAS

Satz 1

Algorithmus 2 ist ein PTAS für das SKP.

Algoithmus 2 ist ein PTAS

Satz 1

Algorithmus 2 ist ein PTAS für das SKP.

Beweis

Zu Zeigen: Laufzeitverhalten ist polynomiell in n für fixes ϵ und für die Lösung S^* gilt $S^* \cdot (1 + \epsilon) = T_{OPT}$.

zu zeigen:

Laufzeitverhalten ist polynomiell in n für fixes $\epsilon.$

zu zeigen:

Laufzeitverhalten ist polynomiell in n für fixes ϵ .

Beweis

Schritt 1: $O(n \log(n))$.

zu zeigen:

Laufzeitverhalten ist polynomiell in n für fixes ϵ .

Beweis

Schritt 1: $O(n \log(n))$.

Schritt 2: O(1).

zu zeigen:

Laufzeitverhalten ist polynomiell in n für fixes ϵ .

Beweis

Schritt 1: $O(n \log(n))$.

Schritt 2: O(1).

Schritt 3: Anzahl Mengen S mit $|S| \le k$:

$$\sum_{0 \le i \le k} \binom{n}{i} \le \sum_{0 \le i \le k} n^i = \frac{n^{k+1}-1}{n-1} = O(n^k).$$

Zeitbeweis für PTAS

zu zeigen:

Laufzeitverhalten ist polynomiell in n für fixes ϵ .

Beweis

Schritt 1: $O(n \log(n))$.

Schritt 2: *O*(1).

Schritt 3: Anzahl Mengen S mit $|S| \le k$:

$$\sum_{0 \le i \le k} \binom{n}{i} \le \sum_{0 \le i \le k} n^i = \frac{n^{k+1}-1}{n-1} = O(n^k).$$

Dauer für das Finden der nächsten Menge: O(1).

Zeitbeweis für PTAS

zu zeigen:

Laufzeitverhalten ist polynomiell in n für fixes ϵ .

Beweis

Schritt 1: $O(n \log(n))$.

Schritt 2: *O*(1).

Schritt 3: Anzahl Mengen S mit $|S| \le k$:

$$\sum_{0 \le i \le k} \binom{n}{i} \le \sum_{0 \le i \le k} n^i = \frac{n^{k+1}-1}{n-1} = O(n^k).$$

Dauer für das Finden der nächsten Menge: O(1).

Erweitern von S zu S^* mithilfe von Algorithmus 1 Schritt 3:

O(n)

Zeitbeweis für PTAS

zu zeigen:

Laufzeitverhalten ist polynomiell in n für fixes ϵ .

Beweis

Schritt 1: $O(n \log(n))$.

Schritt 2: *O*(1).

Schritt 3: Anzahl Mengen S mit $|S| \le k$:

$$\sum_{0 \le i \le k} \binom{n}{i} \le \sum_{0 \le i \le k} n^i = \frac{n^{k+1}-1}{n-1} = O(n^k).$$

Dauer für das Finden der nächsten Menge: O(1).

Erweitern von S zu S^* mithilfe von Algorithmus 1 Schritt 3:

O(n)

$$Time(n) \leq \left[\sum_{0 \leq i \leq k} \binom{n}{i}\right] \cdot O(n) = O(n^{k+1}) = O(n^{\left\lceil \frac{1}{\epsilon} \right\rceil + 1}).$$

zu zeigen:

Genauigkeit des Algorithmus liegt immer unter $1+\epsilon$

$$R_{Algorithmus2}(I,\epsilon) \leq 1 + rac{1}{k} \leq 1 + \epsilon$$

zu zeigen:

Genauigkeit des Algorithmus liegt immer unter $1+\epsilon$ $R_{Algorithmus2}(I,\epsilon) \leq 1+\frac{1}{\iota} \leq 1+\epsilon$

Beweis

Sei $M = \{i_1, i_2, ..., i_p\}, i_1 \le i_2 \le ... \le i_p$ eine optimale Lösung. 2 Möglichkeiten:

zu zeigen:

Genauigkeit des Algorithmus liegt immer unter $1+\epsilon$

$$R_{Algorithmus2}(I,\epsilon) \leq 1 + \frac{1}{k} \leq 1 + \epsilon$$

Beweis

Sei $M = \{i_1, i_2, ..., i_p\}, i_1 \le i_2 \le ... \le i_p$ eine optimale Lösung. 2 Möglichkeiten:

 $p \le k$: M ist eine der in Schritt 3 vorgeschlagenen Mengen und damit ist S^* optimal.

zu zeigen:

Genauigkeit des Algorithmus liegt immer unter $1+\epsilon$ $R_{Algorithmus2}(I,\epsilon) \leq 1+\frac{1}{\iota} \leq 1+\epsilon$

Beweis

Sei $M = \{i_1, i_2, ..., i_p\}, i_1 \le i_2 \le ... \le i_p$ eine optimale Lösung. 2 Möglichkeiten:

- $p \le k$: M ist eine der in Schritt 3 vorgeschlagenen Mengen und damit ist S^* optimal.
- k < p: Algorithmus 2 Schritt 3 liefert eine Menge $P = \{i_1, i_2, ..., i_k\}$ mit den Indizes der k größten Gewichten von M. Falls $P^* = M$ gilt, sind wir fertig.

zu zeigen:

Genauigkeit des Algorithmus liegt immer unter $1+\epsilon$ $R_{Algorithmus2}(I,\epsilon) \leq 1+\frac{1}{k} \leq 1+\epsilon$.

zu zeigen:

Genauigkeit des Algorithmus liegt immer unter $1+\epsilon$ $R_{Algorithmus2}(I,\epsilon) \leq 1+\frac{1}{k} \leq 1+\epsilon$.

Beweis Teil 2

Sei nun $P^* \neq M$.

zu zeigen:

Genauigkeit des Algorithmus liegt immer unter $1 + \epsilon$ $R_{Algorithmus2}(I, \epsilon) \leq 1 + \frac{1}{k} \leq 1 + \epsilon$.

Beweis Teil 2

Sei nun $P^* \neq M$.

 $\exists i_q \in M - P^* \text{ mit } i_q > i_k \ge k \text{ und } cost_{P^*} + w_{i_q} > b \ge cost_M.$

zu zeigen:

Genauigkeit des Algorithmus liegt immer unter $1 + \epsilon$ $R_{Algorithmus2}(I, \epsilon) \leq 1 + \frac{1}{k} \leq 1 + \epsilon$.

Beweis Teil 2

Sei nun $P^* \neq M$.

 $\exists i_q \in M - P^* \text{ mit } i_q > i_k \ge k \text{ und } cost_{P^*} + w_{i_q} > b \ge cost_M.$

Außerdem gilt $w_{i_q} \leq \frac{w_{i_1} + w_{i_2} + \ldots + w_{i_k} + w_{i_q}}{k+1} \leq \frac{cost_M}{k+1}$

zu zeigen:

Genauigkeit des Algorithmus liegt immer unter $1 + \epsilon$ $R_{Algorithmus2}(I, \epsilon) \le 1 + \frac{1}{k} \le 1 + \epsilon$.

Beweis Teil 2

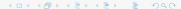
Sei nun $P^* \neq M$.

$$\exists i_q \in M - P^* \text{ mit } i_q > i_k \ge k \text{ und } cost_{P^*} + w_{i_q} > b \ge cost_M.$$

Außerdem gilt
$$w_{i_q} \leq \frac{w_{i_1} + w_{i_2} + \ldots + w_{i_k} + w_{i_q}}{k+1} \leq \frac{cost_M}{k+1}$$

Damit erhalten wir:

$$R(I,\epsilon) = \frac{cost_M}{cost_{S^*}} \le \frac{cost_M}{cost_{P^*}} \le \frac{cost_M}{cost_M - w_{i_q}} \le \frac{cost_M}{cost_M - (cost_M/k + 1)} = \frac{1}{1 - (1/k + 1)} = \frac{k + 1}{k} = 1 + \frac{1}{k} \le 1 + \epsilon$$



DIST-Funktion

Erweiterung der Eingabe um $c_1, ..., c_n$ ="Kosten/Wert".

bisher: $w_i = c_i \forall i \in \{1, ..., n\}.$

DIST-Funktion

Erweiterung der Eingabe um $c_1, ..., c_n$ ="Kosten/Wert".

bisher: $w_i = c_i \forall i \in \{1, ..., n\}$.

DIST-Funktion: relativer Abstand von neuer Eingabe zu SKP.

$$\begin{aligned} DIST(w_1,...,w_n,b,c_1,...,c_n) &= \\ \max \{ \max\{\frac{c_i - w_i}{w_i} | c_i \geq w_i, i \in \{1,...,n\} \}, \\ \max\{\frac{w_i - c_i}{c_i} | w_i \geq c_i, i \in \{1,...,n\} \} \}. \end{aligned}$$

Benennungen

 KP_δ ist die Teilmenge der Rucksackprobleme mit der Bedingung, dass die Kosten und Gewichte der Gegenstände maximal um Faktor $1+\delta$ auseinander liegen.

Benennungen

 KP_δ ist die Teilmenge der Rucksackprobleme mit der Bedingung, dass die Kosten und Gewichte der Gegenstände maximal um Faktor $1+\delta$ auseinander liegen. $\{\mathit{ASKP}_\epsilon\}_{\epsilon>0}$ Menge der $(1+\epsilon)$ -Approximationsalgorithmen entsprechend Algorithmus 2.

Benennungen

 KP_δ ist die Teilmenge der Rucksackprobleme mit der Bedingung, dass die Kosten und Gewichte der Gegenstände maximal um Faktor $1+\delta$ auseinander liegen. $\{\mathit{ASKP}_\epsilon\}_{\epsilon>0}$ Menge der $(1+\epsilon)$ -Approximationsalgorithmen entsprechend Algorithmus 2.

Lemma

Für jedes $\epsilon>0$ und jedes $\delta>0$ ist der Algorithmus $ASKP_{\epsilon}$ ein $(1+\epsilon+\delta(2+\delta)\cdot(1+\epsilon))$ -Approximationsalgorithmus für KP_{δ} .

Lemma

Für jedes $\epsilon > 0$ und jedes $\delta > 0$ ist der Algorithmus $ASKP_{\epsilon}$ ein $(1 + \epsilon + \delta(2 + \delta) \cdot (1 + \epsilon))$ -Approximationsalgorithmus für KP_{δ} .

Lemma

Für jedes $\epsilon>0$ und jedes $\delta>0$ ist der Algorithmus $ASKP_{\epsilon}$ ein $(1+\epsilon+\delta(2+\delta)\cdot(1+\epsilon))$ -Approximationsalgorithmus für KP_{δ} .

Beweis

$$w_1 \geq w_2 \geq ... \geq w_n$$
 für Input $I = w_1, ..., w_n, b, c_1, ..., c_n$. $k = \left\lceil \frac{1}{\epsilon} \right\rceil$. $U = \{i_1, ..., i_I\} \subseteq \{1, 2, ..., n\}$ ist eine optimale Lösung für I.

Lemma

Für jedes $\epsilon>0$ und jedes $\delta>0$ ist der Algorithmus $ASKP_{\epsilon}$ ein $(1+\epsilon+\delta(2+\delta)\cdot(1+\epsilon))$ -Approximationsalgorithmus für KP_{δ} .

Beweis

$$w_1 \geq w_2 \geq ... \geq w_n$$
 für Input $I = w_1, ..., w_n, b, c_1, ..., c_n$. $k = \left\lceil \frac{1}{\epsilon} \right\rceil$. $U = \{i_1, ..., i_l\} \subseteq \{1, 2, ..., n\}$ ist eine optimale Lösung für I.

 $I \leq k$ $ASKP_{\epsilon}$ hat eine optimale Lösung für I mit $cost_U$ gefunden.

Lemma

Für jedes $\epsilon>0$ und jedes $\delta>0$ ist der Algorithmus $ASKP_{\epsilon}$ ein $(1+\epsilon+\delta(2+\delta)\cdot(1+\epsilon))$ -Approximationsalgorithmus für KP_{δ} .

Beweis

$$w_1 \geq w_2 \geq ... \geq w_n$$
 für Input $I = w_1, ..., w_n, b, c_1, ..., c_n$. $k = \lceil \frac{1}{\epsilon} \rceil$. $U = \{i_1, ..., i_l\} \subseteq \{1, 2, ..., n\}$ ist eine optimale Lösung für I.

 $1 \le k$ ASKP_{ϵ} hat eine optimale Lösung für I mit $cost_U$ gefunden.

I>k $ASKP_{\epsilon}$ hat eine greedy-Erweiterung von $T=\{i_1,i_2,...,i_k\}$ zu $T^*=\{i_1,i_2,...,i_k,j_{k+1},...,j_{k+r}\}$ gefunden.

Beweis-2

Zeige nun dass $cost_U - cost_{T^*}$ relativ zu $cost_U$ klein ist:

Beweis-2

Zeige nun dass $cost_U - cost_{T^*}$ relativ zu $cost_U$ klein ist:

Betrachte die Gewichte von U und T^* :

Es gelte $\sum_{i \in U} w_i - \sum_{j \in T^*} w_j \le 0$.

Beweis-2

Zeige nun dass $cost_U - cost_{T^*}$ relativ zu $cost_U$ klein ist:

Betrachte die Gewichte von U und T^* :

Es gelte $\sum_{i \in U} w_i - \sum_{j \in T^*} w_j \le 0$.

für jedes i gilt: $(1+\delta)^{-1} \le \frac{c_i}{w_i} \le 1+\delta$.

Beweis-2

Zeige nun dass $cost_{IJ} - cost_{T*}$ relativ zu $cost_{IJ}$ klein ist:

Betrachte die Gewichte von U und T^* :

Es gelte $\sum_{i \in U} w_i - \sum_{j \in T^*} w_j \le 0$.

für jedes i gilt: $(1+\delta)^{-1} \leq \frac{c_i}{w_i} \leq 1+\delta$.

deshalb gilt: $cost_U = \sum_{i \in U} c_i \leq (1 + \delta) \cdot \sum_{i \in U} w_i$

Beweis-2

Zeige nun dass $cost_U - cost_{T^*}$ relativ zu $cost_U$ klein ist: Betrachte die Gewichte von U und T^* : Es gelte $\sum_{i \in U} w_i - \sum_{j \in T^*} w_j \leq 0$. für jedes i gilt: $(1+\delta)^{-1} \leq \frac{c_i}{w_i} \leq 1+\delta$. deshalb gilt: $cost_U = \sum_{i \in U} c_i \leq (1+\delta) \cdot \sum_{i \in U} w_i$ und $cost_{T^*} = \sum_{i \in T^*} c_i \geq (1+\delta)^{-1} \cdot \sum_{i \in T^*} w_i$.

Beweis-3 Somit erhalten wir: $cost_U - cost_{T^*}$

DIST

Beweis

Beweis-3

$$cost_U - cost_{T^*}$$

$$\leq (1+\delta)\cdot \sum_{i\in U} w_i - (1+\delta)^{-1}\cdot \sum_{j\in T^*} w_j$$

Beweis-3

$$cost_U - cost_{T^*}$$

$$\leq (1+\delta) \cdot \sum_{i \in U} w_i - (1+\delta)^{-1} \cdot \sum_{j \in T^*} w_j$$

$$\leq (1+\delta) \cdot \sum_{i \in U} w_i - (1+\delta)^{-1} \cdot \sum_{i \in U} w_i$$

Beweis-3

$$\begin{aligned} & cost_{U} - cost_{T^*} \\ & \leq (1+\delta) \cdot \sum_{i \in U} w_i - (1+\delta)^{-1} \cdot \sum_{j \in T^*} w_j \\ & \leq (1+\delta) \cdot \sum_{i \in U} w_i - (1+\delta)^{-1} \cdot \sum_{i \in U} w_i \\ & = \frac{\delta \cdot (2+\delta)}{1+\delta} \cdot \sum_{i \in U} w_i \end{aligned}$$

Beweis-3

$$\begin{aligned} & cost_{U} - cost_{T^*} \\ & \leq (1+\delta) \cdot \sum_{i \in U} w_i - (1+\delta)^{-1} \cdot \sum_{j \in T^*} w_j \\ & \leq (1+\delta) \cdot \sum_{i \in U} w_i - (1+\delta)^{-1} \cdot \sum_{i \in U} w_i \\ & = \frac{\delta \cdot (2+\delta)}{1+\delta} \cdot \sum_{i \in U} w_i \\ & \leq \frac{\delta \cdot (2+\delta)}{1+\delta} \sum_{i \in U} (1+\delta) c_i \end{aligned}$$

Beweis-3

$$\begin{aligned} & cost_{U} - cost_{T^*} \\ & \leq (1+\delta) \cdot \sum_{i \in U} w_i - (1+\delta)^{-1} \cdot \sum_{j \in T^*} w_j \\ & \leq (1+\delta) \cdot \sum_{i \in U} w_i - (1+\delta)^{-1} \cdot \sum_{i \in U} w_i \\ & = \frac{\delta \cdot (2+\delta)}{1+\delta} \cdot \sum_{i \in U} w_i \\ & \leq \frac{\delta \cdot (2+\delta)}{1+\delta} \sum_{i \in U} (1+\delta) c_i \\ & = \delta \cdot (2+\delta) \cdot \sum_{i \in U} c_i \end{aligned}$$

Beweis-3

$$\begin{aligned} & cost_{U} - cost_{T^*} \\ & \leq (1+\delta) \cdot \sum_{i \in U} w_i - (1+\delta)^{-1} \cdot \sum_{j \in T^*} w_j \\ & \leq (1+\delta) \cdot \sum_{i \in U} w_i - (1+\delta)^{-1} \cdot \sum_{i \in U} w_i \\ & = \frac{\delta \cdot (2+\delta)}{1+\delta} \cdot \sum_{i \in U} w_i \\ & \leq \frac{\delta \cdot (2+\delta)}{1+\delta} \sum_{i \in U} (1+\delta) c_i \\ & = \delta \cdot (2+\delta) \cdot \sum_{i \in U} c_i \\ & = \delta \cdot (2+\delta) \cdot cost_{U} \end{aligned}$$

Beweis-3

$$\begin{split} & cost_{\mathcal{U}} - cost_{\mathcal{T}^*} \\ & \leq (1+\delta) \cdot \sum_{i \in \mathcal{U}} w_i - (1+\delta)^{-1} \cdot \sum_{j \in \mathcal{T}^*} w_j \\ & \leq (1+\delta) \cdot \sum_{i \in \mathcal{U}} w_i - (1+\delta)^{-1} \cdot \sum_{i \in \mathcal{U}} w_i \\ & = \frac{\delta \cdot (2+\delta)}{1+\delta} \cdot \sum_{i \in \mathcal{U}} w_i \\ & \leq \frac{\delta \cdot (2+\delta)}{1+\delta} \sum_{i \in \mathcal{U}} (1+\delta) c_i \\ & = \delta \cdot (2+\delta) \cdot \sum_{i \in \mathcal{U}} c_i \\ & = \delta \cdot (2+\delta) \cdot cost_{\mathcal{U}} \\ & \text{Und damit: } \frac{cost_{\mathcal{U}} - cost_{\mathcal{T}^*}}{cost_{\mathcal{U}}} \leq \frac{\delta \cdot (2+\delta) \cdot cost_{\mathcal{U}}}{cost_{\mathcal{U}}} = \delta \cdot (2+\delta). \end{split}$$

Beweis-4

Gelte nun $d = \sum_{i \in U} w_i - \sum_{j \in T^*} w_j > 0$.

c :=kosten des ersten Teils von U mit Gewicht $\sum_{j \in T^*} w_j$.

Beweis-4

Gelte nun $d = \sum_{i \in U} w_i - \sum_{j \in T^*} w_j > 0$.

c :=kosten des ersten Teils von U mit Gewicht $\sum_{i \in T^*} w_i$.

Wie vorher gilt nun: $\frac{c-cost_{T^*}}{c} \leq \delta \cdot (2+\delta)$.

Beweis-4

Gelte nun $d = \sum_{i \in U} w_i - \sum_{j \in T^*} w_j > 0$. c :=kosten des ersten Teils von U mit Gewicht $\sum_{j \in T^*} w_j$. Wie vorher gilt nun: $\frac{c - cost_{T^*}}{c} \leq \delta \cdot (2 + \delta)$. Offensichtlich gilt: $d \leq b - \sum_{j \in T^*} w_j \leq w_{i_r}$ für einige $r > k, i_r \in U$.

Beweis-4

Gelte nun $d = \sum_{i \in U} w_i - \sum_{i \in T^*} w_i > 0$.

c :=kosten des ersten Teils von U mit Gewicht $\sum_{j \in T^*} w_j$.

Wie vorher gilt nun: $\frac{c-cost_{T^*}}{c} \leq \delta \cdot (2+\delta)$.

Offensichtlich gilt: $d \leq b - \sum_{i \in T^*} w_i \leq w_{i_r}$ für einige

 $r > k, i_r \in U$.

Damit gilt: $d \leq w_{i_r} \leq \frac{w_{i_1} + w_{i_2} + \dots + w_{i_r}}{r} \leq \frac{\sum_{i \in U} w_i}{k+1} \leq \epsilon \cdot \sum_{i \in U} w_i$.



DIST

Beweis

Beweis-5

Mit $cost_U \le c + d \cdot (1 + \delta)$ erhalten wir:

Mit
$$cost_U \le c + d \cdot (1 + \delta)$$
 erhalten wir: $\frac{cost_U - cost_{T^*}}{cost_U}$

$$\begin{array}{l} \text{Mit } cost_U \leq c + d \cdot (1 + \delta) \text{ erhalten wir:} \\ \frac{cost_U - cost_{T^*}}{cost_U} \\ < \frac{c + d \cdot (1 + \delta) - cost_{T^*}}{cost_U} \end{array}$$

Mit
$$cost_U \le c + d \cdot (1 + \delta)$$
 erhalten wir:
$$\frac{cost_U - cost_{T^*}}{cost_U} \le \frac{c + d \cdot (1 + \delta) - cost_{T^*}}{cost_U}$$

$$\leq \frac{c - cost_U}{cost_U} + \frac{(1+\delta) \cdot \epsilon \cdot \sum_{i \in U} w_i}{cost_U}$$

$$\begin{aligned} & \text{Mit } cost_{\mathcal{U}} \leq c + d \cdot (1+\delta) \text{ erhalten wir:} \\ & \frac{cost_{\mathcal{U}} - cost_{T^*}}{cost_{\mathcal{U}}} \\ & \leq \frac{c + d \cdot (1+\delta) - cost_{T^*}}{cost_{\mathcal{U}}} \\ & \leq \frac{c - cost_{T^*}}{cost_{\mathcal{U}}} + \frac{(1+\delta) \cdot \epsilon \cdot \sum_{i \in \mathcal{U}} w_i}{cost_{\mathcal{U}}} \\ & \leq \delta \cdot (2+\delta) + (1+\delta) \cdot \epsilon \cdot (1+\delta) \end{aligned}$$

Beweis-5

Mit
$$cost_U \le c + d \cdot (1 + \delta)$$
 erhalten wir:
$$\frac{cost_U - cost_{T^*}}{cost_U} \le \frac{c + d \cdot (1 + \delta) - cost_{T^*}}{cost_U} \le \frac{c - cost_{T^*}}{cost_U} + \frac{(1 + \delta) \cdot \epsilon \cdot \sum_{i \in U} w_i}{cost_U} \le \delta \cdot (2 + \delta) + (1 + \delta) \cdot \epsilon \cdot (1 + \delta)$$

 $=2\delta+\delta^2+\epsilon\cdot(1+\delta)^2$

Mit
$$cost_U \leq c + d \cdot (1 + \delta)$$
 erhalten wir:
$$\frac{cost_U - cost_{T^*}}{cost_U} \leq \frac{c + d \cdot (1 + \delta) - cost_{T^*}}{cost_U} \leq \frac{c - cost_{T^*}}{cost_U} + \frac{(1 + \delta) \cdot \epsilon \cdot \sum_{i \in U} w_i}{cost_U} \leq \delta \cdot (2 + \delta) + (1 + \delta) \cdot \epsilon \cdot (1 + \delta) = 2\delta + \delta^2 + \epsilon \cdot (1 + \delta)^2 = \epsilon + \delta \cdot (2 + \delta) \cdot (1 + \epsilon)$$

Korollar

Algorithmus 2 ist stabil bezüglich DIST, aber nicht superstabil.

Korollar

Algorithmus 2 ist stabil bezüglich DIST, aber nicht superstabil.

Beweis

Stabilität falls gilt $||\hat{f}(x) - f(\tilde{x})|| = O(\epsilon_{mach}).$

Erfüllt, da es eine $1+\epsilon+\delta\cdot(2+\delta)\cdot(1+\epsilon)$ -Approximation ist, und es somit für jedes ϵ ein δ gibt, sodass die Approximation beliebig nahe an der Approximation von SKP ist.

Beweis-2

Für superstabil betrachte die Eingabe

$$w_1, w_2, ..., w_m, u_1, u_2, ..., u_m, b, c_1, c_2, ..., c_{2m}$$
, mit $w_1 = w_2 = ... = w_m, u_1 = u_2 = ... = u_m, w_i = u_i + 1$ für $i = 1, ..., m$. $b = \sum_{i=1}^m w_i = m \cdot w_1, c_1 = c_2 = ... = c_m = (1 - \delta)w_1, c_{m+1} = c_{m+2} = ... = c_{2m} = (1 + \delta)u_1$.

Beweis-2

Für superstabil betrachte die Eingabe

$$w_1, w_2, ..., w_m, u_1, u_2, ..., u_m, b, c_1, c_2, ..., c_{2m},$$
 mit $w_1 = w_2 = ... = w_m, \ u_1 = u_2 = ... = u_m, \ w_i = u_i + 1$ für $i = 1, ..., m.$ $b = \sum_{i=1}^m w_i = m \cdot w_1, \ c_1 = c_2 = ... = c_m = (1 - \delta)w_1, \ c_{m+1} = c_{m+2} = ... = c_{2m} = (1 + \delta)u_1.$ $\not\exists \delta$ sodass die Kosten des Algorithmus für KP_δ nahe der Kosten von Algorithmus für SKP für alle ϵ liegen.

Beweis-2

Für superstabil betrachte die Eingabe

$$w_1, w_2, ..., w_m, u_1, u_2, ..., u_m, b, c_1, c_2, ..., c_{2m}$$
, mit $w_1 = w_2 = ... = w_m, \ u_1 = u_2 = ... = u_m, \ w_i = u_i + 1$ für $i = 1, ..., m.$ $b = \sum_{i=1}^m w_i = m \cdot w_1, \ c_1 = c_2 = ... = c_m = (1 - \delta)w_1, \ c_{m+1} = c_{m+2} = ... = c_{2m} = (1 + \delta)u_1.$ $\not\exists \delta$ sodass die Kosten des Algorithmus für KP_δ nahe der Kosten von Algorithmus für SKP für alle ϵ liegen.

Folgerung

Neuer Algorithmus mit anderer Form der Sortierung.

Algorithmus 3

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}$ mit $0 < \epsilon < 1$.

Algorithmus 3

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein

bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}$ mit $0 < \epsilon < 1$.

Schritt 1: Sortiere $\frac{c_1}{w_1}, \frac{c_2}{w_2}, ..., \frac{c_n}{w_n}$, sodass $\frac{c_i}{w_i} \geq \frac{c_{i+1}}{w_{i+1}}$ für i=1,...,n-1 gilt.

Algorithmus 3

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein

bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}$ mit $0 < \epsilon < 1$.

Schritt 1: Sortiere $\frac{c_1}{w_1}, \frac{c_2}{w_2}, ..., \frac{c_n}{w_n}$, sodass $\frac{c_i}{w_i} \geq \frac{c_{i+1}}{w_{i+1}}$ für i=1,...,n-1

gilt.

Schritt 2: $k := \left\lceil \frac{1}{\epsilon} \right\rceil$.

Algorithmus 3

- Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}$ mit $0 < \epsilon < 1$.
- Schritt 1: Sortiere $\frac{c_1}{w_1}, \frac{c_2}{w_2}, ..., \frac{c_n}{w_n}$, sodass $\frac{c_i}{w_i} \geq \frac{c_{i+1}}{w_{i+1}}$ für i=1,...,n-1 gilt.
- Schritt 2: $k := \left\lceil \frac{1}{\epsilon} \right\rceil$.
- Schritt 3: (Wie in Algorithmus 2 nur mit anderer Ordnung) Für jede Untermenge $S \subseteq \{1,2,...,n\}$ mit $|S| \le k$ und $\sum_{i \in S} w_i \le b$, erweitere S zu S^* durch Schritt 3 von Algorithmus 1(Greedy). Speichere das momentan teuerste S^* .

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९

Algorithmus 3

- Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}$ mit $0 < \epsilon < 1$.
- Schritt 1: Sortiere $\frac{c_1}{w_1}, \frac{c_2}{w_2}, ..., \frac{c_n}{w_n}$, sodass $\frac{c_i}{w_i} \geq \frac{c_{i+1}}{w_{i+1}}$ für i=1,...,n-1 gilt.
- Schritt 2: $k := \left\lceil \frac{1}{\epsilon} \right\rceil$.
- Schritt 3: (Wie in Algorithmus 2 nur mit anderer Ordnung) Für jede Untermenge $S \subseteq \{1,2,...,n\}$ mit $|S| \le k$ und $\sum_{i \in S} w_i \le b$, erweitere S zu S^* durch Schritt 3 von Algorithmus 1(Greedy). Speichere das momentan teuerste S^* .
 - Output: Das beste T^* das in Schritt 3 gebildet wurde.

 $MOD - SKP_{\epsilon}$ sei der Algorithmus für ein bestimmtes $\epsilon > 0$.

 $MOD - SKP_{\epsilon}$ sei der Algorithmus für ein bestimmtes $\epsilon > 0$.

Lemma

Algorithmus 3 ist eine $1 + \epsilon \cdot (1 + \delta)^2$ -Approximation für KP_{δ} .

 $MOD - SKP_{\epsilon}$ sei der Algorithmus für ein bestimmtes $\epsilon > 0$.

Lemma

Algorithmus 3 ist eine $1 + \epsilon \cdot (1 + \delta)^2$ -Approximation für KP_{δ} .

Beweis-1

Sei $U = \{i_1, i_2, ..., i_l\} \subseteq \{1, 2, ..., n\}$ eine optimale Lösung.

 $MOD - SKP_{\epsilon}$ sei der Algorithmus für ein bestimmtes $\epsilon > 0$.

Lemma

Algorithmus 3 ist eine $1 + \epsilon \cdot (1 + \delta)^2$ -Approximation für KP_{δ} .

Beweis-1

Sei $U=\{i_1,i_2,...,i_l\}\subseteq\{1,2,...,n\}$ eine optimale Lösung.

 $l \leq k$: Der Algorithmus liefert eine optimale Lösung.

 $MOD - SKP_{\epsilon}$ sei der Algorithmus für ein bestimmtes $\epsilon > 0$.

Lemma

Algorithmus 3 ist eine $1 + \epsilon \cdot (1 + \delta)^2$ -Approximation für KP_{δ} .

Beweis-1

Sei U= $\{i_1, i_2, ..., i_l\} \subseteq \{1, 2, ..., n\}$ eine optimale Lösung.

 $l \le k$: Der Algorithmus liefert eine optimale Lösung.

l > k: T^* ist die greedy-Erweiterung von $T = \{i_1, i_2, ..., i_k\}$.

Beweis-2

Betrachte die beiden Möglichkeiten abhängig von den Größen $\sum_{i \in U} w_i$ und $\sum_{j \in T^*} w_j$:

Beweis-2

Betrachte die beiden Möglichkeiten abhängig von den Größen $\sum_{i \in U} w_i$ und $\sum_{j \in T^*} w_j$: Sei $\sum_{i \in U} w_i - \sum_{j \in T^*} w_j < 0$.

Beweis-2

Betrachte die beiden Möglichkeiten abhängig von den Größen $\sum_{i \in U} w_i$ und $\sum_{j \in T^*} w_j$:

Sei $\sum_{i \in U} w_i - \sum_{j \in T^*} w_j < 0$.

Nicht möglich, da dann $cost_U < cost_{T^*}$ und damit U nicht

optimal wäre.

Beweis-2

Betrachte die beiden Möglichkeiten abhängig von den Größen

$$\sum_{i \in U} w_i$$
 und $\sum_{j \in T^*} w_j$:

Sei
$$\sum_{i\in U} w_i - \sum_{j\in T^*} w_j < 0$$
.

Nicht möglich, da dann $cost_U < cost_{T^*}$ und damit U nicht optimal wäre.

Sei demnach
$$d = \sum_{i \in U} w_i - \sum_{j \in T^*} w_j \ge 0$$
.

Beweis-2

Betrachte die beiden Möglichkeiten abhängig von den Größen

$$\sum_{i\in U} w_i$$
 und $\sum_{j\in T^*} w_j$:

Sei
$$\sum_{i\in U} w_i - \sum_{j\in T^*} w_j < 0$$
.

Nicht möglich, da dann $cost_U < cost_{T^*}$ und damit U nicht optimal wäre.

Sei demnach
$$d = \sum_{i \in U} w_i - \sum_{j \in T^*} w_j \ge 0$$
.

Sei c die Kosten des Teiles von U mit dem Gewicht $\sum_{j \in T^*} w_j$.

Wegen der Optimalität von T^* bezüglich der Kosten pro

Gewicht gilt $c - cost_{T^*} \leq 0$.

Beweis-3

Da $i_1, i_2, ..., i_k$ in U und T^* vorhanden sind und $w_{i_1}, ..., w_{i_k}$ die größten Gewichte in beiden sind, gilt wie vorhin gezeigt für das Restgewicht d von U:

$$d \leq \epsilon \cdot \sum_{i \in U} w_i$$
.

Beweis-3

Da $i_1, i_2, ..., i_k$ in U und T^* vorhanden sind und $w_{i_1}, ..., w_{i_k}$ die größten Gewichte in beiden sind, gilt wie vorhin gezeigt für das Restgewicht d von U:

$$d \le \epsilon \cdot \sum_{i \in U} w_i$$
.
Auch gilt $cost_U \le c + d \cdot (1 + \delta)$.

Beweis-3

Da $i_1, i_2, ..., i_k$ in U und T^* vorhanden sind und $w_{i_1}, ..., w_{i_k}$ die größten Gewichte in beiden sind, gilt wie vorhin gezeigt für das Restgewicht d von U:

$$d \leq \epsilon \cdot \sum_{i \in U} w_i$$
.

Auch gilt $cost_U \leq c + d \cdot (1 + \delta)$.

Daraus folgt:

Beweis-3

Da $i_1, i_2, ..., i_k$ in U und T^* vorhanden sind und $w_{i_1}, ..., w_{i_k}$ die größten Gewichte in beiden sind, gilt wie vorhin gezeigt für das Restgewicht d von U:

$$d \leq \epsilon \cdot \sum_{i \in U} w_i$$
.
Auch gilt $cost_U \leq c + d \cdot (1 + \delta)$.
Daraus folgt:

$$\frac{cost_{U} - cost_{T^*}}{cost_{U}}$$

Beweis-3

Da $i_1, i_2, ..., i_k$ in U und T^* vorhanden sind und $w_{i_1}, ..., w_{i_k}$ die größten Gewichte in beiden sind, gilt wie vorhin gezeigt für das Restgewicht d von U:

$$d \le \epsilon \cdot \sum_{i \in U} w_i$$
.
Auch gilt $cost_U \le c + d \cdot (1 + \delta)$.

Daraus folgt: cost_{II}-cost_T*

$$\leq \frac{\frac{c}{cost_U}}{\frac{c+d\cdot(1+\delta)-cost_{T^*}}{cost_U}}$$

Beweis-3

Da $i_1, i_2, ..., i_k$ in U und T^* vorhanden sind und $w_{i_1}, ..., w_{i_k}$ die größten Gewichte in beiden sind, gilt wie vorhin gezeigt für das Restgewicht d von U:

$$d \le \epsilon \cdot \sum_{i \in U} w_i$$
.
Auch gilt $cost_U \le c + d \cdot (1 + \delta)$.

Daraus folgt:

$$\frac{cost_{U} - cost_{T^{*}}}{cost_{U}} \le \frac{c + d \cdot (1 + \delta) - cost_{T^{*}}}{cost_{U}} \le \frac{d \cdot (1 + \delta)}{cost_{U}}$$

Beweis-3

Da $i_1, i_2, ..., i_k$ in U und T^* vorhanden sind und $w_{i_1}, ..., w_{i_k}$ die größten Gewichte in beiden sind, gilt wie vorhin gezeigt für das Restgewicht d von U:

$$d \leq \epsilon \cdot \sum_{i \in U} w_i$$
.
Auch gilt $cost_U \leq c + d \cdot (1 + \delta)$.

Daraus folgt:

$$\frac{ \frac{ \cos t_{U} - \cos t_{T^*} }{ \cos t_{U} } }{ \leq \frac{ c + d \cdot (1 + \delta) - \cos t_{T^*} }{ \cos t_{U} } }$$

$$\leq \frac{ d \cdot (1 + \delta) }{ \cos t_{U} }$$

$$\leq \epsilon \cdot (1 + \delta) \cdot \frac{ \sum_{i \in U} w_{i} }{ \cos t_{U} }$$

Approximationsgüte von Algorithmus 3

Beweis-3

Da $i_1, i_2, ..., i_k$ in U und T^* vorhanden sind und $w_{i_1}, ..., w_{i_k}$ die größten Gewichte in beiden sind, gilt wie vorhin gezeigt für das Restgewicht d von U:

$$d \leq \epsilon \cdot \sum_{i \in U} w_i$$
.
Auch gilt $cost_U \leq c + d \cdot (1 + \delta)$.

Daraus folgt:

$$\frac{\cot_{U} - \cot_{T^*}}{\cot_{U}} \\
\leq \frac{c + d \cdot (1 + \delta) - \cot_{T^*}}{\cot_{U}} \\
\leq \frac{d \cdot (1 + \delta)}{\cot_{U}} \\
\leq \epsilon \cdot (1 + \delta) \cdot \frac{\sum_{i \in U} w_i}{\cot_{U}} \\
\leq \epsilon \cdot (1 + \delta)^{2}$$

Satz

MOD-SKP ist superstabil bezüglich DIST und damit ist Algorithmus 3 ein PTAS für das KP.

Satz

MOD-SKP ist superstabil bezüglich DIST und damit ist Algorithmus 3 ein PTAS für das KP.

Algorithmus 4

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}^+$.

Algorithmus 4

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}^+$.

Schritt 1:
$$c_{max} := max\{c_1, ..., c_n\}.$$

 $t := \left\lfloor \log_2 \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n} \right\rfloor.$

Algorithmus 4

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}^+$.

Schritt 1:
$$c_{max} := max\{c_1, ..., c_n\}.$$

 $t := \left|\log_2 \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n}\right|.$

Schritt 2: für alle $i \in \{1, ..., n\}$: $c'_i := |c_i \cdot 2^{-t}|$.

Algorithmus 4

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}^+$.

Schritt 1:
$$c_{max} := max\{c_1, ..., c_n\}.$$

$$t := \left\lfloor \log_2 \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n} \right\rfloor.$$

- Schritt 2: für alle $i \in \{1, ..., n\}$: $c'_i := \lfloor c_i \cdot 2^{-t} \rfloor$.
- Schritt 3: Berechne ein optimales Ergebnis T' für die Eingabe $I' = w_1, ..., w_n, b, c'_1, ..., c'_n$.



Algorithmus 4

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}^+$.

Schritt 1:
$$c_{max} := max\{c_1, ..., c_n\}.$$

$$t := \left\lfloor \log_2 \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n} \right\rfloor.$$

Schritt 2: für alle $i \in \{1, ..., n\}$: $c'_i := \lfloor c_i \cdot 2^{-t} \rfloor$.

Schritt 3: Berechne ein optimales Ergebnis T' für die Eingabe $I' = w_1, ..., w_n, b, c'_1, ..., c'_n$.

Output: T.

Methode der Optimalen Berechnung

Algorithmus 4.1

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}^+$.

Methode der Optimalen Berechnung

Algorithmus 4.1

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein

bestimmtes $n \in \mathbb{N}$, $\epsilon \in \mathbb{R}^+$.

Schritt 1: $TRIPLE(1) := \{(0,0,\emptyset)\} \cup \{(c_1,w_1,\{1\})| if \ w_1 \leq b\}\}.$

Methode der Optimalen Berechnung

Algorithmus 4.1

```
Input: Positive Integer w_1, w_2, ..., w_n, b, c_1, ..., c_n für ein
            bestimmtes n \in \mathbb{N}. \epsilon \in \mathbb{R}^+.
Schritt 1: TRIPLE(1) := \{(0,0,\emptyset)\} \cup \{(c_1,w_1,\{1\})| if \ w_1 \leq b\}\}.
Schritt 2: for i = 1 to n - 1do
              begin Set(i + 1) := TRIPLE(i)
                for every (kw, T) \in TRIPLE(i) do
                   if w + w_{i+1} \le b then
            SET(i+1) := SET(i+1) \cup \{(k+c_{i+1}, w+w_{i+1}, T \cup \{i+1\})\}\
            SET(i+1) enthält nur ein Tripel (k,w,T) für jedes k.
            Dieses hat das geringste Gewicht w.
```

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein

Methode der Optimalen Berechnung

Algorithmus 4.1

```
bestimmtes n \in \mathbb{N}, \epsilon \in \mathbb{R}^+.

Schritt 1: TRIPLE(1) := \{(0,0,\emptyset)\} \cup \{(c_1,w_1,\{1\})| if \ w_1 \leq b)\}.

Schritt 2: for i=1 to n-1do

begin Set(i+1) := TRIPLE(i)

for every (kw,T) \in TRIPLE(i) do

if w+w_{i+1} \leq b then

SET(i+1) := SET(i+1) \cup \{(k+c_{i+1},w+w_{i+1},T\cup\{i+1\})\}

SET(i+1) enthält nur ein Tripel (k,w,T) für jedes k.

Dieses hat das geringste Gewicht w.
```

Schritt 3: Suche das größte k.

Input: Positive Integer $w_1, w_2, ..., w_n, b, c_1, ..., c_n$ für ein

Methode der Optimalen Berechnung

Algorithmus 4.1

```
bestimmtes n \in \mathbb{N}, \epsilon \in \mathbb{R}^+.

Schritt 1: TRIPLE(1) := \{(0,0,\emptyset)\} \cup \{(c_1,w_1,\{1\})| if \ w_1 \leq b)\}.

Schritt 2: for i=1 to n-1do

begin Set(i+1) := TRIPLE(i)

for every (kw,T) \in TRIPLE(i) do

if w+w_{i+1} \leq b then

SET(i+1) := SET(i+1) \cup \{(k+c_{i+1},w+w_{i+1},T\cup\{i+1\})\}

SET(i+1) enthält nur ein Tripel (k,w,T) für jedes k.

Dieses hat das geringste Gewicht w.
```

Florian Pawlik: Knapsackproblem

Output: T

Schritt 3: Suche das größte k.

◆□→ ◆□→ ◆□→ ◆□→ □

Satz

Algorithmus 4 ist ein FPTAS für das KP.

Beweis-1

Nachdem T' eine optimale Lösung für I' ist, und damit eine mögliche Lösung für I'. I und I' unterscheiden sich nicht in den Gewichten. Damit ist T' auch eine mögliche Lösung für I.

Satz

Algorithmus 4 ist ein FPTAS für das KP.

Beweis-1

Nachdem T' eine optimale Lösung für I' ist, und damit eine mögliche Lösung für I'. I und I' unterscheiden sich nicht in den Gewichten. Damit ist T' auch eine mögliche Lösung für I. Sei T eine optimale Lösung für I.

Beweis-2

Somit gilt:

$$cost(T, I) = \sum_{j \in T} c_j$$

Beweis-2

Somit gilt: $cost(T, I) = \sum_{j \in T} c_j$ $\geq \sum_{j \in T'} c_j = cost(T', I)$

Beweis-2

Somit gilt: $cost(T, I) = \sum_{j \in T} c_j$ $\geq \sum_{j \in T'} c_j = cost(T', I)$ $\geq 2^t \cdot \sum_{j \in T'} c'_j$

Beweis-2

Somit gilt: $cost(T, I) = \sum_{j \in T} c_j$ $\geq \sum_{j \in T'} c_j = cost(T', I)$ $\geq 2^t \cdot \sum_{j \in T'} c'_j$ $\geq 2^t \cdot \sum_{i \in T} c'_i$

Beweis-2

Somit gilt: $cost(T, I) = \sum_{j \in T} c_j$ $\geq \sum_{j \in T'} c_j = cost(T', I)$ $\geq 2^t \cdot \sum_{j \in T'} c'_j$ $\geq 2^t \cdot \sum_{j \in T} c'_j$ $= \sum_{i \in T} 2^t \cdot \lfloor c_i \cdot 2^{-t} \rfloor$

Beweis-2

Somit gilt: $cost(T, I) = \sum_{j \in T} c_j$ $\geq \sum_{j \in T'} c_j = cost(T', I)$ $\geq 2^t \cdot \sum_{j \in T'} c'_j$ $\geq 2^t \cdot \sum_{j \in T} c'_j$ $= \sum_{j \in T} 2^t \cdot \lfloor c_j \cdot 2^{-t} \rfloor$ $\geq \sum_{i \in T} 2^t (c_i \cdot 2^{-t} - 1)$

Beweis-2

Somit gilt: $cost(T, I) = \sum_{j \in T} c_j$ $\geq \sum_{j \in T'} c_j = cost(T', I)$ $\geq 2^t \cdot \sum_{j \in T'} c'_j$ $\geq 2^t \cdot \sum_{j \in T} c'_j$ $= \sum_{j \in T} 2^t \cdot \lfloor c_j \cdot 2^{-t} \rfloor$ $\geq \sum_{j \in T} 2^t (c_j \cdot 2^{-t} - 1)$ $\geq (\sum_{j \in T} c_j) - n \cdot 2^t$

Beweis-2

Somit gilt: $cost(T,I) = \sum_{j \in T} c_j$ $\geq \sum_{j \in T'} c_j = cost(T',I)$ $\geq 2^t \cdot \sum_{j \in T'} c'_j$ $\geq 2^t \cdot \sum_{j \in T} c'_j$ $= \sum_{j \in T} 2^t \cdot \lfloor c_j \cdot 2^{-t} \rfloor$ $\geq \sum_{j \in T} 2^t (c_j \cdot 2^{-t} - 1)$ $\geq (\sum_{j \in T} c_j) - n \cdot 2^t$ $= cost(T,I) - n \cdot 2^t$

Beweis-3

$$cost(T, I) \ge cost(T', I) \ge cost(T, I) - n \cdot 2^t$$

Beweis-3

$$cost(T, I) \ge cost(T', I) \ge cost(T, I) - n \cdot 2^{t}$$
$$0 \le cost(T, I) - cost(T', I) \le n \cdot 2^{t}$$

Beweis-3

$$\begin{aligned} & cost(T,I) \geq cost(T',I) \geq cost(T,I) - n \cdot 2^t \\ & 0 \leq cost(T,I) - cost(T',I) \leq n \cdot 2^t \\ & \leq n \cdot \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n} \end{aligned}$$

Beweis-3

$$cost(T, I) \ge cost(T', I) \ge cost(T, I) - n \cdot 2^{t}$$

$$0 \le cost(T, I) - cost(T', I) \le n \cdot 2^{t}$$

$$\le n \cdot \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n}$$

$$= \epsilon \cdot \frac{c_{max}}{1+\epsilon}$$

Beweis-3

Damit zeigen wir:

$$\begin{aligned} & cost(T,I) \geq cost(T',I) \geq cost(T,I) - n \cdot 2^{t} \\ & 0 \leq cost(T,I) - cost(T',I) \leq n \cdot 2^{t} \\ & \leq n \cdot \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n} \\ & = \epsilon \cdot \frac{c_{max}}{1+\epsilon} \end{aligned}$$

Somit können wir mit der Annahme, dass $cost(T, I) \ge c_{max}$ gilt erhalten, dass:

Beweis-3

Damit zeigen wir:

$$\begin{aligned} & cost(T,I) \ge cost(T',I) \ge cost(T,I) - n \cdot 2^t \\ & 0 \le cost(T,I) - cost(T',I) \le n \cdot 2^t \\ & \le n \cdot \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n} \\ & = \epsilon \cdot \frac{c_{max}}{1+\epsilon} \end{aligned}$$

Somit können wir mit der Annahme, dass $cost(T, I) \ge c_{max}$ gilt erhalten, dass:

$$cost(T', I) \ge c_{max} - \epsilon \cdot \frac{c_{max}}{1+\epsilon}$$

Beweis-4

$$R(I) =$$

Beweis-4

$$R(I) = \frac{cost(T,I)}{cost(T',I)}$$

Beweis-4

$$R(I) = \frac{cost(T,I)}{cost(T',I)}$$

$$= \frac{cost(T',I) + cost(T,I) - cost(T',I)}{cost(T',I)}$$

Beweis-4

$$R(I) = \frac{\cos(T, I)}{\cos(T', I)}$$

$$= \frac{\cos(T', I) + \cos(T, I) - \cos(T', I)}{\cos(T', I)}$$

$$\leq 1 + \frac{\epsilon \cdot (c_{max}/(1 + \epsilon))}{\cos(T', I)}$$

Beweis-4

$$R(I) = \frac{\cos(T, I)}{\cos(T', I)}$$

$$= \frac{\cos(T', I) + \cos(T', I) - \cos(T', I)}{\cos(T', I)}$$

$$\leq 1 + \frac{\epsilon \cdot (c_{max}/(1+\epsilon))}{\cos(T', I)}$$

$$\leq 1 + \frac{\epsilon \cdot (c_{max}/(1+\epsilon))}{c_{max} - \epsilon \cdot \epsilon \cdot (c_{max}/(1+\epsilon))}$$

Beweis-4

$$R(I) = \frac{\cos(T, I)}{\cos(T', I)}$$

$$= \frac{\cos(T', I) + \cos(T, I) - \cos(T', I)}{\cos(T', I)}$$

$$\leq 1 + \frac{\epsilon \cdot (c_{max}/(1+\epsilon))}{\cos(T', I)}$$

$$\leq 1 + \frac{\epsilon \cdot (c_{max}/(1+\epsilon))}{c_{max} - \epsilon \cdot \epsilon \cdot (c_{max}/(1+\epsilon))}$$

$$= 1 + \frac{\epsilon}{1+\epsilon} \cdot \frac{1}{1 - (\epsilon/(1+\epsilon))}$$

Beweis-4

Somit erhalten wir für die Approximationsgüte:

$$R(I) = \frac{\cos(T, I)}{\cos(T', I)}$$

$$= \frac{\cos(T', I) + \cos(T, I) - \cos(T', I)}{\cos(T', I)}$$

$$\leq 1 + \frac{\epsilon \cdot (c_{max}/(1+\epsilon))}{\cos(T', I)}$$

$$\leq 1 + \frac{\epsilon \cdot (c_{max}/(1+\epsilon))}{c_{max} - \epsilon \cdot \epsilon \cdot (c_{max}/(1+\epsilon))}$$

$$= 1 + \frac{\epsilon}{1+\epsilon} \cdot \frac{1}{1 - (\epsilon/(1+\epsilon))}$$

$$= 1 + \frac{\epsilon}{1+\epsilon} \cdot (1+\epsilon) = 1 + \epsilon$$

Beweis-5

Für die Zeitkomplexität des Algorithmus ist beobachtbar, dass Schritt 1 und Schritt 2 in Zeit O(n) laufen.

Beweis-5

Für die Zeitkomplexität des Algorithmus ist beobachtbar, dass Schritt 1 und Schritt 2 in Zeit O(n) laufen. Schritt 3 läuft in der Zeit von $O(n \cdot Opt_{KP}(I'))$.

Beweis-5

Für die Zeitkomplexität des Algorithmus ist beobachtbar, dass Schritt 1 und Schritt 2 in Zeit O(n) laufen. Schritt 3 läuft in der Zeit von $O(n \cdot Opt_{KP}(I'))$. $Opt_{KP}(I)$ kann wie folgt abgeschätzt werden:

Beweis-5

Für die Zeitkomplexität des Algorithmus ist beobachtbar, dass Schritt 1 und Schritt 2 in Zeit O(n) laufen. Schritt 3 läuft in der Zeit von $O(n \cdot Opt_{KP}(I'))$. $Opt_{KP}(I)$ kann wie folgt abgeschätzt werden: $Opt_{KP}(I')$

Beweis-5

Für die Zeitkomplexität des Algorithmus ist beobachtbar, dass Schritt 1 und Schritt 2 in Zeit O(n) laufen. Schritt 3 läuft in der Zeit von $O(n \cdot Opt_{KP}(I'))$. $Opt_{KP}(I)$ kann wie folgt abgeschätzt werden:

 $Opt_{KP}(I')$

$$\leq \sum_{i=1}^{n} c_i' = \sum_{i=1}^{n} \left[c_i \cdot 2^{-\left\lfloor \log_2 \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n} \right\rfloor} \right]$$

Beweis-5

Für die Zeitkomplexität des Algorithmus ist beobachtbar, dass Schritt 1 und Schritt 2 in Zeit O(n) laufen.

Schritt 3 läuft in der Zeit von $O(n \cdot Opt_{KP}(I'))$.

 $Opt_{KP}(I)$ kann wie folgt abgeschätzt werden:

$$Opt_{KP}(I')$$

$$\leq \sum_{i=1}^{n} c_{i}' = \sum_{i=1}^{n} \left[c_{i} \cdot 2^{-\left\lfloor \log_{2} \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n} \right\rfloor} \right]$$

$$\leq \sum_{i=1}^{n} \left(c_{i} \cdot 2 \cdot \frac{(1+\epsilon) \cdot n}{\epsilon \cdot c_{max}} \right)$$

Beweis-5

Für die Zeitkomplexität des Algorithmus ist beobachtbar, dass Schritt 1 und Schritt 2 in Zeit O(n) laufen.

Schritt 3 läuft in der Zeit von $O(n \cdot Opt_{KP}(I'))$.

 $Opt_{KP}(I)$ kann wie folgt abgeschätzt werden:

$$Opt_{KP}(I')$$

$$\leq \sum_{i=1}^{n} c_{i}' = \sum_{i=1}^{n} \left[c_{i} \cdot 2^{-\left\lfloor \log_{2} \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n} \right\rfloor} \right]$$

$$\leq \sum_{i=1}^{n} (c_{i} \cdot 2 \cdot \frac{(1+\epsilon) \cdot n}{\epsilon \cdot c_{max}})$$

$$= 2 \cdot (1+\epsilon) \cdot \epsilon^{-1} \cdot \frac{n}{c_{max}} \cdot \sum_{i=1}^{n} c_{i}$$

Beweis-5

Für die Zeitkomplexität des Algorithmus ist beobachtbar, dass Schritt 1 und Schritt 2 in Zeit O(n) laufen.

Schritt 3 läuft in der Zeit von $O(n \cdot Opt_{KP}(I'))$.

 $Opt_{KP}(I)$ kann wie folgt abgeschätzt werden:

 $Opt_{KP}(I')$

$$\leq \sum_{i=1}^{n} c_{i}' = \sum_{i=1}^{n} \left[c_{i} \cdot 2^{-\left\lfloor \log_{2} \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n} \right\rfloor} \right]$$

$$\leq \sum_{i=1}^{n} (c_{i} \cdot 2 \cdot \frac{(1+\epsilon) \cdot n}{\epsilon \cdot c_{max}})$$

$$= 2 \cdot (1+\epsilon) \cdot \epsilon^{-1} \cdot \frac{n}{c_{max}} \cdot \sum_{i=1}^{n} c_{i}$$

$$\leq 2 \cdot (1+\epsilon) \cdot \epsilon^{-1} \cdot n^{2} \in O(\epsilon^{-1} \cdot n^{2})$$

Beweis-5

Für die Zeitkomplexität des Algorithmus ist beobachtbar, dass

Schritt 1 und Schritt 2 in Zeit O(n) laufen.

Schritt 3 läuft in der Zeit von $O(n \cdot Opt_{KP}(I'))$.

 $Opt_{KP}(I)$ kann wie folgt abgeschätzt werden:

 $Opt_{KP}(I')$

$$\leq \sum_{i=1}^{n} c_{i}' = \sum_{i=1}^{n} \left[c_{i} \cdot 2^{-\left\lfloor \log_{2} \frac{\epsilon \cdot c_{max}}{(1+\epsilon) \cdot n} \right\rfloor} \right]$$

$$\leq \sum_{i=1}^{n} (c_{i} \cdot 2 \cdot \frac{(1+\epsilon) \cdot n}{\epsilon \cdot c_{max}})$$

$$= 2 \cdot (1+\epsilon) \cdot \epsilon^{-1} \cdot \frac{n}{c_{max}} \cdot \sum_{i=1}^{n} c_{i}$$

$$\leq 2 \cdot (1+\epsilon) \cdot \epsilon^{-1} \cdot n^{2} \in O(\epsilon^{-1} \cdot n^{2})$$

Algorithmus 4 läuft in $O(\epsilon^{-1} \cdot n^3)$ und ist somit ein FPTAS.

Conclusion

Verwendung des KP

- Verschlüsselungsalgorithmen
- Bankräuber
- Transportfirmen
- uvm.

Vielen Dank für eure Aufmerksamkeit

noch Fragen?

