Fundamentals of optimization problems

Dmitriy Serdyuk

Ferienakademie in Sarntal 2012 FAU Erlangen-Nürnberg, TU München, Uni Stuttgart

September 2012

1 Introduction

- Optimization problems
- PO and NPO problems
- NP-hard optimization problems
- 2 Approximate solutions
 - Definitions
 - Absolute approximation
 - Relative approximation
 - Limits to approximability: The gap technique
- 3 Polynomial time approximation schemes
 - Definitions
 - APX versus PTAS
- 4 Fully polynomial time approximation schemes
 - Definitions
 - Negative results for the class FPTAS

Introduction Optimization problems NP-hard optimization problems Definitions Absolute approximation Limits to approximability: The gap technique Definitions APX versus PTAS 4 Fully polynomial time approximation schemes Definitions Negative results for the class FPTAS

Optimization problem \mathcal{P} : ($I_{\mathcal{P}}$, $SOL_{\mathcal{P}}$, $m_{\mathcal{P}}$, $goal_{\mathcal{P}}$) where

- **1** $I_{\mathcal{P}}$ set of instances of the problem \mathcal{P}
- 2 $SOL_{\mathcal{P}}$ is a function that associates to any input instance $x \in I_{\mathcal{P}}$ the set of feasible solutions of x
- 3 $m_{\mathcal{P}}$ is a measure function that for every pair $(x, y)(x \in I_{\mathcal{P}})$ and $y \in SOL_{\mathcal{P}}(x)$ associates positive integer which is the value of the feasible solution y
- 4 $goal_{\mathcal{P}} \in \{MIN, MAX\}$ specifies whether \mathcal{P} is a maximization or a minimization problem

- SOL^{*}_P set of optimal solutions of *x*
- $\square m_{\mathcal{P}}(x, y^*) = goal_{\mathcal{P}}\{v | v = m_{\mathcal{P}}(x, z) \land z \in SOL_{\mathcal{P}}(x)\}$
- The value of any optimal solution y^* of x will be denoted as $m_{\mathcal{P}}^*(x)$

Given a graph G = (V, E), the Minimum Vertex Cover problem is to find a vertex cover of minimum size. Formally:

$$\blacksquare I = \{G = (V, E) | G \text{ is a graph} \}$$

$$\blacksquare SOL(G) = \{U \subseteq V | \forall (v_i, v_j) \in E : v_i \in U \lor v_j \in U\}$$

- $\blacksquare m(G,U) = |U|$
- goal = MIN

- Constructive problem P_C − given an instance x ∈ I_P, derive an optimal solution y* ∈ SOL_P(x) and its measure m^{*}_P(x)
- Evaluation problem P_E given an instance x ∈ I_P, derive its optimal measure m^{*}_P(x)
- Decision problem \mathcal{P}_D given an instance $x \in I_{\mathcal{P}}$ and a positive integer value K, derive whether $m_{\mathcal{P}}^*(x) \ge K$ if goal = MAX or $m_{\mathcal{P}}^*(x) \le K$ if goal = MIN

Underlying language of \mathcal{P} is

1
$$\{(x, K) | x \in I \land m^*(x) \ge K\}$$
 if $goal = MAX$

2
$$\{(x, K) | x \in I \land m^*(x) \leq K\}$$
 if goal = MIN

Minimum Vertex Cover

- Instance: Graph $G = (V, E), K \in \mathbb{N}$
- Question: derive whether exists vertex cover on *G* of size $\leq K$ Minimum Traveling Salesperson(TSP)
 - Instance: Set of cities $\{c_1, \ldots, c_n\}$, $n \times n$ matrix *D* of distances
 - Solutions: permutations $\{c_{i_1}, \ldots, c_{i_n}\}$
 - Measure: $\sum_{k=1}^{n-1} D(i_k, i_{k+1}) + D(i_n, i_1)$

Introduction Optimization problems PO and NPO problems

- NP-hard optimization problems
- 2 Approximate solutions
 - Definitions
 - Absolute approximation
 - Relative approximation
 - Limits to approximability: The gap technique
- 3 Polynomial time approximation schemes
 - Definitions
 - APX versus PTAS
- Fully polynomial time approximation schemes
 Definitions
 - Negative results for the class FPTAS

Find minimum path between two nodes in the graph G

- Instance: Graph G = (V, E), two nodes $v_s, v_d \in V$
- Solution: A path ($v_s = v_{i_1}, \ldots, v_{i_k} = v_d$)
- Measure: k

Can be solved by breadth first search

Problem $\mathcal{P} = (I, SOL, m, goal)$ belongs to the class NPO if:

- 1 / is recognizable in polynomial time
- there exists a polynomial q such that, given an instance x ∈ I, for any y, |y| < q(|x|), it is decidable in polynomial time whether y ∈ SOL(x)
- 3 the measure function *m* is computable in polynomial time

Minimum Vertex Cover belongs to NPO since:

- 1 any graph is recognizable in polynomial time
- 2 size of any feasible solution y is smaller then number of vertexes, testing whether a subset $U \subseteq V$ requires testing whether any edge in E is incident to at least one node in U
- 3 the size of U is clearly computable in polynomial time

Theorem

For any optimization problem \mathcal{P} in NPO, the corresponding decision problem \mathcal{P}_D belongs to NP

Proof.

Obviously: solution *y* should be guessed

Optimization problem \mathcal{P} belongs to the class PO if it is in NPO and there exists a polynomial-time computable algorithm \mathcal{A} that for any instance $x \in I$, returns an optimal solution $y \in SOL^*(x)$ together with its value $m^*(x)$

- Optimization problems
- PO and NPO problems
- NP-hard optimization problems
- 2 Approximate solutions
 - Definitions
 - Absolute approximation
 - Relative approximation
 - Limits to approximability: The gap technique
- 3 Polynomial time approximation schemes
 - Definitions
 - APX versus PTAS
- Fully polynomial time approximation schemes
 Definitions
 - Negative results for the class FPTAS

An optimization problem \mathcal{P} is called NP-hard, if for every decision problem $\mathcal{P}' \in NP$, $\mathcal{P}' \leq_T \mathcal{P}$, \mathcal{P}' can be solved in polynomial time by an algorithm which uses an oracle that, for any instance $x \in I_{\mathcal{P}}$, returns an optimal solution y^* of x and its value $m_{\mathcal{P}}^*(x)$

Theorem

Let a problem $\mathcal{P} \in NPO$ be given; if underlying language of \mathcal{P} is NP-complete then \mathcal{P} is NP-hard

Proof.

Clearly the solution of the decision problem could be obtained for free if an oracle would give us the solution of the constructive optimization problem

Corollary

If $NP \neq P$ then $PO \neq NPO$

Relations between decision, evaluation and constructive problems

Theorem

For any problem $\mathcal{P} \in NPO$, $\mathcal{P}_D \equiv_T \mathcal{P}_E \leq_T \mathcal{P}_C$

Proof.

It is clearly that $\mathcal{P}_D \leq_T \mathcal{P}_E \leq_T \mathcal{P}_C$.

The range of possible values of m(x, y) is bounded by $M = 2^{p(|x|)}$ for some polynomial p. Hence, by applying binary search the evaluation problem could be solved by at most log(M) = p(|x|) queries to the oracle \mathcal{P}_D

Example

Maximum Clique

- Instance: Graph G = (V, E)
- Solution: A clique in G

 $U \subseteq V \ \forall (v_i, v_j) \in U \times U : (v_i, v_j) \in E \lor v_i = v_j$

MaximumClique could be solved using an oracle that can solve evaluation problem $MaximumClique_E$ MaximumClique(G):

- **1** Compute k size of the maximum clique in the graph G
- **2** if k = 1 return any node
- 3 find node v for which $MaximumClique_E(G(v)) = k$
- 4 return $\{v\} \cup MaximumClique(G^{-}(v))$

Where G(v) - a subgraph induced by v and its neighbors, $G^{-}(v) - a$ subgraph induced by neighbors of v

Theorem

If problem $\mathcal{P} \in NPO$ and \mathcal{P}_D is NP-complete, then $\mathcal{P}_C \leq_T \mathcal{P}_D$

Proof.

Let us assume, that \mathcal{P} is a maximization problem. Problem \mathcal{P}' has the same definition except for the measure function $m_{\mathcal{P}'}$, which is defined as follows. Let p a polynomial, which bounds the length of the solutions of \mathcal{P} . Let $\lambda(y)$ denote the rank of y in the lexicographical order. Then we denote the measure function $m_{\mathcal{P}'}(x, y) = 2^{p(|x|)+1}m_{\mathcal{P}}(x, y) + \lambda(y).$

Proof.

- For all y₁, y₂ ∈ SOL_{P'}(x) measure functions are different m_P(x, y₁) ≠ m_P(x, y₂). Therefore exists only unique optimal solution of the problem P' y^{*}_{P'} ∈ SOL^{*}_{P'}(x).
- 2 If $m_{\mathcal{P}'}(x, y_1) > m_{\mathcal{P}'}(x, y_2)$ then $m_{\mathcal{P}}(x, y_1) \ge m_{\mathcal{P}}(x, y_2)$. Therefore, $y^*_{\mathcal{P}'} \in SOL^*_{\mathcal{P}}(x)$

Optimal solution could be derived by computing remainder of the division $m^*_{(P)'}(x)$ by $2^{p(|x|)+1}$.

 \mathcal{P}_D is NP-complete and it can be used to solve \mathcal{P}'_D .

1 Introduction

- Optimization problems
- PO and NPO problems
- NP-hard optimization problems

2 Approximate solutions

Definitions

- Absolute approximation
- Relative approximation
- Limits to approximability: The gap technique

3 Polynomial time approximation schemes

- Definitions
- APX versus PTAS
- Fully polynomial time approximation schemes
 Definitions
 - Negative results for the class FPTAS

Given an optimization problem $\mathcal{P} = (I, SOL, m, goal)$, an algorithm \mathcal{A} is an *approximation* algorithm for \mathcal{P} if for any given instance $x \in I$ it returns an approximate solution, that is a feasible solution $A(x) \in SOL(x)$

1 Introduction

- Optimization problems
- PO and NPO problems
- NP-hard optimization problems

2 Approximate solutions

Definitions

Absolute approximation

- Relative approximation
- Limits to approximability: The gap technique

3 Polynomial time approximation schemes

- Definitions
- APX versus PTAS
- Fully polynomial time approximation schemes
 Definitions
 - Negative results for the class FPTAS

Given an optimization problem $\mathcal{P} = (I, SOL, m, goal)$, for any instance *x* and for any feasible solution *y* of *x*, the absolute error of y with respect to *x* is defined as

$$D(x,y) = |m^*(x) - m(x,y)|$$

Definition

Given an optimization problem $\mathcal{P} = (I, SOL, m, goal)$ and an approximation algorithm \mathcal{A} for \mathcal{P} we say that \mathcal{A} is an absolute approximation algorithm if there exists a constant *k* such that, for every instance *x* of \mathcal{P} , $D(x, \mathcal{A}(x)) \leq k$

Problem, that not allow absolute approximation algorithm, unless P = NP

Theorem

Unless P = NP, no polynomial-time absolute approximation algorithm exists for Maximum Knapsack

Proof.

Let *X* be a set of *n* items with profits p_1, \ldots, p_n and weights a_1, \ldots, a_n , and let *b* be the knapsack capacity. If the problem would allow approximation algorithm with absolute error *k*, then consider another instance with profits multiplied by k + 1. The set of the feasible solutions is the same. The only solution with absolute error bounded by *k* can be found. Hence we can solve exactly original problem.

1 Introduction

- Optimization problems
- PO and NPO problems
- NP-hard optimization problems

2 Approximate solutions

- Definitions
- Absolute approximation

Relative approximation

Limits to approximability: The gap technique

3 Polynomial time approximation schemes

- Definitions
- APX versus PTAS

Fully polynomial time approximation schemes Definitions

Negative results for the class FPTAS

Given an optimization problem \mathcal{P} , for any instance *x* and for any feasible solution *y* of *x*, the *relative error* defined as

$$E(x, y) = \frac{|m^*(x) - m(x, y)|}{max\{m^*(x), m(x, y)\}}$$

Definition

Given an optimization problem \mathcal{P} and an approximation algorithm \mathcal{A} , we say that \mathcal{A} is ϵ -approximation algorithm if the relative approximation error provided by \mathcal{A}

$$E(x, y) \leq \epsilon$$

Given an optimization problem \mathcal{P} , for any instance *x* and for any feasible solution *y* of *x*, the *performance ratio* defined as

$$R(x,y) = max\left\{\frac{m^*(x)}{m(x,y)}, \frac{m(x,y)}{m^*(x)}\right\}$$

Definition

Given an optimization problem \mathcal{P} and an approximation algorithm \mathcal{A} , we say that \mathcal{A} is *r*-approximation algorithm if the performance ratio provided by \mathcal{A}

$$R(x,y) \leq r$$

APX is the class of NPO problems such that for some $r \ge 1$ there exists a polynomial-time *r*-approximate algorithm.

D. Serdyuk (Ferienakademie in Sarntal 2012) Fundamentals of optimization problems

Theorem

If Minimum Traveling Salesperson problem belongs to APX, then P = NP

Proof.

Let us consider that exists polynomial-time r-approximate algorithm for MinTSP. For every instance of the Hamiltonian Circle decision problem we can construct the following Traveling Salesperson problem.

Problem that not belongs to APX, unless P = NP(2)

Proof.

Let distances on the same graph G = (V, E)

$$d(v_i, v_j) = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 1 + nr & \text{otherwise} \end{cases}$$

Corollary

If $P \neq NP$, then $APX \subset NPO$

1 Introduction

- Optimization problems
- PO and NPO problems
- NP-hard optimization problems

2 Approximate solutions

- Definitions
- Absolute approximation
- Relative approximation
- Limits to approximability: The gap technique
- 3 Polynomial time approximation schemes
 - Definitions
 - APX versus PTAS
- Fully polynomial time approximation schemes
 Definitions
 - Negative results for the class FPTAS

Theorem

Let \mathcal{P}' be an NP-complete decision problem and let \mathcal{P} be an NPO minimization problem. Let us suppose, that there exist two polynomial-time computable functions $f : I_{\mathcal{P}'} \to I_{\mathcal{P}}, c : I_{\mathcal{P}'} \to \mathbb{N}$ and a constant gap > 0, such that for any instance x

$$m^*(f(x)) = \left\{ egin{array}{c} c(x) & \mbox{if x is a positive instance,} \\ c(x)(1+gap) & \mbox{otherwise} \end{array}
ight.$$

Then no polynomial-time *r*-approximate algorithm for \mathcal{P} with r < 1 + gap can exist, unless P = NP

Proof.

We can use approximation algorithm of \mathcal{P} for solving \mathcal{P}' in the following way. Let us apply approximation algorithm \mathcal{A} to f(x)

- 1 if x is negative instance, $m^*(f(x)) \ge c(x)(1 + gap)$ and $m(f(x), A) \ge c(x)(1 + gap)$
- 2 if x is positive instance, we have that

$$rac{m(f(x),\mathcal{A})}{m^*(f(x))} \leq r < 1 + gap$$

 $m^*(f(x)) = c(x)$ hence m(f(x), A) < c(x)(1 + gap)

1 Introduction

- Optimization problems
- PO and NPO problems
- NP-hard optimization problems

2 Approximate solutions

- Definitions
- Absolute approximation
- Relative approximation
- Limits to approximability: The gap technique

3 Polynomial time approximation schemesDefinitions

APX versus PTAS

Fully polynomial time approximation schemes Definitions

Negative results for the class FPTAS

Let \mathcal{P} be an NPO problem. An algorithm \mathcal{A} is said to be *polynomial time approximation scheme*(*PTAS*) if, for any instance *x* and for any rational number r > 1, \mathcal{A} applied to (x, r) returns an *r*-approximate solution of *x* in time polynomial in |x|.

The running time of a PTAS may also depend on 1/(r-1)

Definition

PTAS is the class of NPO problems that admit polynomial time approximation scheme

1 Introduction

- Optimization problems
- PO and NPO problems
- NP-hard optimization problems

2 Approximate solutions

- Definitions
- Absolute approximation
- Relative approximation
- Limits to approximability: The gap technique

3 Polynomial time approximation schemes

- Definitions
- APX versus PTAS
- Fully polynomial time approximation schemes
 Definitions
 - Negative results for the class FPTAS

FAUT

Theorem

If $P \neq NP$, then Minimum Bin Packing does not belong to the class PTAS

Corollary

If $P \neq NP$, then $PTAS \subset APX$

1 Introduction

- Optimization problems
- PO and NPO problems
- NP-hard optimization problems

2 Approximate solutions

- Definitions
- Absolute approximation
- Relative approximation
- Limits to approximability: The gap technique

3 Polynomial time approximation schemes

- Definitions
- APX versus PTAS

Fully polynomial time approximation schemes Definitions

Negative results for the class FPTAS

Let \mathcal{P} be an NPO problem. An algorithm \mathcal{A} is said to be *fully polynomial time approximation scheme*(*FPTAS*) if, for any instance x and for any rational number r > 1, \mathcal{A} applied to (x, r) returns an r-approximate solution of x in time polynomial both in |x| and 1/(r-1).

Definition

FPTAS is the class of NPO problems that admit fully polynomial time approximation scheme

1 Introduction

- Optimization problems
- PO and NPO problems
- NP-hard optimization problems

2 Approximate solutions

- Definitions
- Absolute approximation
- Relative approximation
- Limits to approximability: The gap technique

3 Polynomial time approximation schemes

- Definitions
- APX versus PTAS

Fully polynomial time approximation schemes Definitions

Negative results for the class FPTAS

Many problems not belong to class FPTAS, unless P = NP

Definition

An optimization problem is *polynomially* bounded if there exists a polynomial *p* such that for any instance *x* and for any $y \in SOL(x)$, $m(x, y) \leq p(|x|)$

Theorem

No NP-hard polynomially bounded optimization problem belongs to the class FPTAS, unless P = NP

Many problems not belong to class FPTAS, unless P = NP(2)

Proof.

Suppose we have a FPTAS \mathcal{A} for the problem \mathcal{P} which, for any instance x and for any rational r > 1, runs in time bounded q(|x|, 1/(r-1)). Since \mathcal{P} is polynomially bounded there exists polynomial p such that $m^*(x) \le p(|x|)$. If we choose r = 1 + 1/p(|x|), then \mathcal{A} provides an optimal solution.

$$m(x, \mathcal{A}(x, r)) \geq m^*(x) rac{p(|x|)}{p(|x|) + 1} > m^*(x) - 1$$

Many problems not belong to class FPTAS, unless P = NP(3)

Corollary

if $P \neq NP$, then $FPTAS \subset PTAS$

Proof.

Maximum Independent Set restricted to planar graphs belongs to PTAS. On the other side the problem is clearly polynomially bounded.

- We defined optimization problems and considered some examples
- We defined different types of approximation algorithms for optimization problems. We denoted classes of optimization problems: APX, PTAS, FPTAS.

