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What is optimization problem

Definition
Optimization problem P: (IP ,SOLP ,mP ,goalP) where

1 IP – set of instances of the problem P
2 SOLP – is a function that associates to any input instance x ∈ IP

the set of feasible solutions of x
3 mP – is a measure function that for every pair (x , y)(x ∈ IP and

y ∈ SOLP(x)) associates positive integer which is the value of the
feasible solution y

4 goalP ∈ {MIN,MAX} – specifies whether P is a maximization or a
minimization problem

D. Serdyuk (Ferienakademie in Sarntal 2012) Fundamentals of optimization problems Sept. 2012 4 / 46



Optimal solutions

SOL∗P – set of optimal solutions of x
mP(x , y∗) = goalP{v |v = mP(x , z) ∧ z ∈ SOLP(x)}
The value of any optimal solution y∗ of x will be denoted as m∗P(x)
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Example: Minimum Vertex Cover

Given a graph G = (V ,E), the Minimum Vertex Cover problem is to
find a vertex cover of minimum size. Formally:

I = {G = (V ,E)|G is a graph}
SOL(G) = {U ⊆ V |∀(vi , vj) ∈ E : vi ∈ U ∨ vj ∈ U}
m(G,U) = |U|
goal = MIN
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Problems associated with optimization problem

Definition
Constructive problem PC – given an instance x ∈ IP , derive an
optimal solution y∗ ∈ SOLP(x) and its measure m∗P(x)
Evaluation problem PE – given an instance x ∈ IP , derive its
optimal measure m∗P(x)
Decision problem PD – given an instance x ∈ IP and a positive
integer value K , derive whether m∗P(x) ≥ K if goal = MAX or
m∗P(x) ≤ K if goal = MIN

Underlying language of P is
1 {(x ,K )|x ∈ I ∧m∗(x) ≥ K} if goal = MAX
2 {(x ,K )|x ∈ I ∧m∗(x) ≤ K} if goal = MIN
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Examples

Minimum Vertex Cover
Instance: Graph G = (V ,E), K ∈ N
Question: derive whether exists vertex cover on G of size ≤ K

Minimum Traveling Salesperson(TSP)
Instance: Set of cities {c1, . . . , cn}, n × n matrix D of distances
Solutions: permutations {ci1 , . . . , cin}
Measure:

∑n−1
k=1 D(ik , ik+1) + D(in, i1)
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Example: Minimum Path

Find minimum path between two nodes in the graph G
Instance: Graph G = (V ,E), two nodes vs, vd ∈ V
Solution: A path (vs = vi1 , . . . , vik = vd)

Measure: k
Can be solved by breadth first search
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Class NPO

Definition
Problem P = (I,SOL,m,goal) belongs to the class NPO if:

1 I is recognizable in polynomial time
2 there exists a polynomial q such that, given an instance x ∈ I, for

any y , |y | < q(|x |), it is decidable in polynomial time whether
y ∈ SOL(x)

3 the measure function m is computable in polynomial time
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Example

Minimum Vertex Cover belongs to NPO since:

1 any graph is recognizable in polynomial time
2 size of any feasible solution y is smaller then number of vertexes,

testing whether a subset U ⊆ V requires testing whether any
edge in E is incident to at least one node in U

3 the size of U is clearly computable in polynomial time
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Corresponding decision problem

Theorem
For any optimization problem P in NPO, the corresponding decision
problem PD belongs to NP

Proof.
Obviously: solution y should be guessed
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Class PO

Definition
Optimization problem P belongs to the class PO if it is in NPO and
there exists a polynomial-time computable algorithm A that for any
instance x ∈ I, returns an optimal solution y ∈ SOL∗(x) together with
its value m∗(x)
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NP-hard optimization problems

Definition
An optimization problem P is called NP-hard, if for every decision
problem P ′ ∈ NP, P ′ ≤T P, P ′ can be solved in polynomial time by an
algorithm which uses an oracle that, for any instance x ∈ IP , returns an
optimal solution y∗ of x and its value m∗P(x)
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When problem is NP-hard?

Theorem
Let a problem P ∈ NPO be given; if underlying language of P is
NP-complete then P is NP-hard

Proof.
Clearly the solution of the decision problem could be obtained for free
if an oracle would give us the solution of the constructive optimization
problem

Corollary
If NP 6= P then PO 6= NPO
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Relations between decision, evaluation and
constructive problems

Theorem
For any problem P ∈ NPO, PD ≡T PE ≤T PC

Proof.
It is clearly that PD ≤T PE ≤T PC .
The range of possible values of m(x , y) is bounded by M = 2p(|x |) for
some polynomial p. Hence, by applying binary search the evaluation
problem could be solved by at most log(M) = p(|x |) queries to the
oracle PD
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Example

Maximum Clique
Instance: Graph G = (V ,E)

Solution: A clique in G
U ⊆ V ∀(vi , vj) ∈ U × U : (vi , vj) ∈ E ∨ vi = vj

MaximumClique could be solved using an oracle that can solve
evaluation problem MaximumCliqueE
MaximumClique(G):

1 Compute k – size of the maximum clique in the graph G
2 if k = 1 return any node
3 find node v for which MaximumCliqueE(G(v)) = k
4 return {v} ∪MaximumClique(G−(v))

Where G(v) – a subgraph induced by v and its neighbors, G−(v) – a
subgraph induced by neighbors of v
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Constructive to decision problem reduction

Theorem
If problem P ∈ NPO and PD is NP-complete, then PC ≤T PD

Proof.
Let us assume, that P is a maximization problem.
Problem P ′ has the same definition except for the measure function
mP ′ , which is defined as follows. Let p a polynomial, which bounds the
length of the solutions of P. Let λ(y) denote the rank of y in the
lexicographical order. Then we denote the measure function
mP ′(x , y) = 2p(|x |)+1mP(x , y) + λ(y).
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Constructive to decision problem reduction(2)

Proof.
1 For all y1, y2 ∈ SOLP ′(x) measure functions are different

mP(x , y1) 6= mP(x , y2). Therefore exists only unique optimal
solution of the problem P ′ y∗P ′ ∈ SOL∗P ′(x).

2 If mP ′(x , y1) > mP ′(x , y2) then mP(x , y1) ≥ mP(x , y2). Therefore,
y∗P ′ ∈ SOL∗P(x)

Optimal solution could be derived by computing remainder of the
division m∗(P)′(x) by 2p(|x |)+1.
PD is NP-complete and it can be used to solve P ′D.
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Approximate algorithms

Definition
Given an optimization problem P = (I,SOL,m,goal), an algorithm A is
an approximation algorithm for P if for any given instance x ∈ I it
returns an approximate solution, that is a feasible solution
A(x) ∈ SOL(x)
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Absolute approximate algorithms

Definition
Given an optimization problem P = (I,SOL,m,goal), for any instance
x and for any feasible solution y of x , the absolute error of y with
respect to x is defined as

D(x , y) = |m∗(x)−m(x , y)|

Definition
Given an optimization problem P = (I,SOL,m,goal) and an
approximation algorithm A for P we say that A is an absolute
approximation algorithm if there exists a constant k such that, for every
instance x of P, D(x ,A(x)) ≤ k
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Problem, that not allow absolute approximation
algorithm, unless P = NP

Theorem
Unless P = NP, no polynomial-time absolute approximation algorithm
exists for Maximum Knapsack

Proof.
Let X be a set of n items with profits p1, . . . ,pn and weights a1, . . . ,an,
and let b be the knapsack capacity. If the problem would allow
approximation algorithm with absolute error k , then consider another
instance with profits multiplied by k + 1. The set of the feasible
solutions is the same. The only solution with absolute error bounded
by k can be found. Hence we can solve exactly original problem.
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Relative error

Definition
Given an optimization problem P, for any instance x and for any
feasible solution y of x , the relative error defined as

E(x , y) =
|m∗(x)−m(x , y)|

max{m∗(x),m(x , y)}

Definition
Given an optimization problem P and an approximation algorithm A,
we say that A is ε-approximation algorithm if the relative approximation
error provided by A

E(x , y) ≤ ε
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Performance ratio

Definition
Given an optimization problem P, for any instance x and for any
feasible solution y of x , the performance ratio defined as

R(x , y) = max
{

m∗(x)
m(x , y)

,
m(x , y)
m∗(x)

}

Definition
Given an optimization problem P and an approximation algorithm A,
we say that A is r -approximation algorithm if the performance ratio
provided by A

R(x , y) ≤ r
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Class APX

Definition
APX is the class of NPO problems such that for some r ≥ 1 there
exists a polynomial-time r -approximate algorithm.
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Problem that not belongs to APX, unless P = NP

Theorem
If Minimum Traveling Salesperson problem belongs to APX, then P =
NP

Proof.
Let us consider that exists polynomial-time r -approximate algorithm for
MinTSP. For every instance of the Hamiltonian Circle decision problem
we can construct the following Traveling Salesperson problem.
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Problem that not belongs to APX, unless P = NP(2)

Proof.
Let distances on the same graph G = (V ,E)

d(vi , vj) =

{
1 if (vi , vj) ∈ E

1 + nr otherwise

Corollary
If P 6= NP, then APX ⊂ NPO
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The gap technique

Theorem
Let P ′ be an NP-complete decision problem and let P be an NPO
minimization problem. Let us suppose, that there exist two
polynomial-time computable functions f : IP ′ → IP , c : IP ′ → N and a
constant gap > 0, such that for any instance x

m∗(f (x)) =
{

c(x) if x is a positive instance,
c(x)(1 + gap) otherwise

Then no polynomial-time r-approximate algorithm for P with
r < 1 + gap can exist, unless P = NP
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The gap technique(2)

Proof.
We can use approximation algorithm of P for solving P ′ in the following
way. Let us apply approximation algorithm A to f (x)

1 if x is negative instance, m∗(f (x)) ≥ c(x)(1 + gap) and
m(f (x),A) ≥ c(x)(1 + gap)

2 if x is positive instance, we have that

m(f (x),A)
m∗(f (x))

≤ r < 1 + gap

m∗(f (x)) = c(x) hence m(f (x),A) < c(x)(1 + gap)
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Polynomial time approximation schemes

Definition
Let P be an NPO problem. An algorithm A is said to be polynomial
time approximation scheme(PTAS) if, for any instance x and for any
rational number r > 1, A applied to (x , r) returns an r -approximate
solution of x in time polynomial in |x |.

The running time of a PTAS may also depend on 1/(r − 1)

Definition
PTAS is the class of NPO problems that admit polynomial time
approximation scheme
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APX versus PTAS

Theorem
If P 6= NP, then Minimum Bin Packing does not belong to the class
PTAS

Corollary
If P 6= NP, then PTAS ⊂ APX
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The class FPTAS

Definition
Let P be an NPO problem. An algorithm A is said to be fully
polynomial time approximation scheme(FPTAS) if, for any instance x
and for any rational number r > 1, A applied to (x , r) returns an
r -approximate solution of x in time polynomial both in |x | and 1/(r − 1).

Definition
FPTAS is the class of NPO problems that admit fully polynomial time
approximation scheme
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Many problems not belong to class FPTAS, unless
P = NP

Definition
An optimization problem is polynomially bounded if there exists a
polynomial p such that for any instance x and for any y ∈ SOL(x),
m(x , y) ≤ p(|x |)

Theorem
No NP-hard polynomially bounded optimization problem belongs to the
class FPTAS, unless P = NP
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Many problems not belong to class FPTAS, unless
P = NP(2)

Proof.
Suppose we have a FPTAS A for the problem P which, for any
instance x and for any rational r > 1, runs in time bounded
q(|x |,1/(r − 1)). Since P is polynomially bounded there exists
polynomial p such that m∗(x) ≤ p(|x |). If we choose r = 1 + 1/p(|x |),
then A provides an optimal solution.

m(x ,A(x , r)) ≥ m∗(x)
p(|x |)

p(|x |) + 1
> m∗(x)− 1
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Many problems not belong to class FPTAS, unless
P = NP(3)

Corollary
if P 6= NP, then FPTAS ⊂ PTAS

Proof.
Maximum Independent Set restricted to planar graphs belongs to
PTAS. On the other side the problem is clearly polynomially
bounded.
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Conclusion

We defined optimization problems and considered some examples
We defined different types of approximation algorithms for
optimization problems. We denoted classes of optimization
problems: APX, PTAS, FPTAS.
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