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Abstract

Have you ever wondered about how heavy one can fill his knapsack? No? That does not
matter. You will get the answer in this paper. There are several algorithms for the simple
knapsack problem and the knapsack problem. Four of them will be shown and proved in this
paper.
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1 Introduction

The knapsack problem(KP)(see Section 2.1) is in the class of the NP hard problems and one
of the most famous problems. Before we find an algorithm for the KP, we search for some
algorithms(see Section 3) for the simple knapsack problem(SKP)(see Section 2.2) such as the
greedy algorithm(see Section 3.1). Then we find a PTAS(see Section 3.2) for the SKP. After
that we modify our SKP by introducing a second parameter for each index and defining the
DIST-function(see Section 3.3). We then find a PTAS for the modified SKP(see Section 3.4).
The last section is about the KP and a FPTAS(see Section 4.2) to solve it. Within the FPTAS
we will see an algorithm(see Section 4.1) to solve KP correctly using dynamic programming.

2 The problems

The two Problems we are facing in this paper can easily be defined as a maximisation problem.
They can be formulated in mathematical language as follows.

2.1 The knapsack problem

The main problem to solve in this paper is the knapsack problem. Imagine you have a knapsack
that can hold x kilogram and wish to pack several items into it. Each item has a certain value
and a weight. The problem is to maximise the cost1 of your knapsack.

In mathematical language:
maximise cost(T ) where T ⊂ I with I = {1, ..., n} is a finite set of indices and
cost(T ) :=

∑
i∈T ci

with the restriction that
∑

i∈T wi < x

where ci means the cost of the item with the index i
and wi means the weight of the item with the index i.

2.2 The simple knapsack problem

For reasons of simplicity we first use the simple knapsack problem. It is similar to the KP(see
Section 2.1), the only difference between them is that in SKP there is wi = ci∀i ∈ I.

To have a picture of what SKP means you take a thief robbing a bank. He has a knapsack
that holds x kilogram of weight. There are gold ingots and coins with different weight in the
bank. The only value is the gold itself. His goal is to maximise the weight and so the value of
his items in the knapsack.

In mathematical language:
maximise cost(T ) where T ⊂ I with I = {1, ..., n} is a finite set of indices and
cost(T ) :=

∑
i∈T wi

with the restriction that
∑

i∈T wi < x

where wi means the weight and the cost of the item with the index i.

3 Algorithms for SKP

The important point of solving a problem is to face it with an algorithm. The simplest way
of getting a solution is a greedy way. The runtime of a greedy algorithm(see Section 3.1) is
good, but the approximation ratio is mostly very bad. That‘s why we search for PTAS(see
Section 3.2)(see Section 3.4) algorithms.

1cost is just the general notation of the price the single items have in the knapsack. In this example it has the
same meaning like value or the price
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3.1 Greedy algorithm

The main idea of a greedy algorithm is to do the best thing, that can be done at this point
of time. It is not the best solution. We will see, that the greedy algorithm for the SKP has
an approximation ratio of 2. The algorithm works according to the following rules: take the
index with the highest weight you have not used jet. Then try to add it to your set of indices,
therefore you have to look if the sum of the weights of your indices + the new index is heavier
than the maximum weight of the knapsack. Add the item if it is possible.

In pseudo code the algorithm looks like:

input: positive integer w1, w2, ..., wn, b for a n∈ N.
output: T

step 1: sort w1 to wn descending on the size

step 2: T := ∅; costT := 0

step 3: for i=1 to n do

if costT + wi < b then

do begin T := T ∪ {i};
costT := costT + wi;

end

where wi mean the weight of the index i.
b is the maximum of the sum of the weights a set of indices is allowed to contain. After
writing an algorithm we have to take a look on the runtime and the approximation ratio.

The runtime of the greedy algorithm is O(n · log(n)) because of step 1.
Sorting in step 1 needs a time of O(n · log(n)).
Step 2 runs in a constant time O(1)
Step 3 runs in a time depending on the number of iterations of the for-block. The for-block
itself runs in a constant time. We get O(n ∗O(1)) = O(n).

To show that the greedy algorithm is a 2-approximation algorithm for the SKP we have
to show that costT ≥ b

2 or T is optimal.
w.l.o.g. we can say that b ≥ w1 ≥ w2 ≥ ... ≥ wn.

Let j + 1 be the smallest index not in T .
If we have j = 1 then w1 +w2 ≥ b and 1 ∈ T so costT ≥ w1. Because of w1 ≥ w2 it is obvious,
that w1 >

b
2 . We get costT ≥ w1 ≥ b

2 and we are finished with the case of j = 1.
Lets have a look on j ≥ 2:

T contains the j smallest indices. In other words the j highest weights are in the knapsack and
if you want to put j + 1 into it it is bigger than b. You can make following approximation for
the j + 1th weight:

wj+1 ≤ wj ≤
w1 + w2 + ...+ wj

j
≤ b

j

Now follows for the costT that costT > b− wj+1 ≥ b− b
j ≥

b
2 for j ≥ 2

With this result you see, that the Algorithm is a 2-Approximation.

3.2 Polynomial time approximation scheme

According to the inequation(3.1) we can create a PTAS. If a found knapsack T contained the
j highest weights out of the optimal knapsack TOPT , then the difference would be costTOPT −
costT ≤ wij+1 ≤ b

ij+1−1 ≤
b
j .
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We now search for the j highest weights in TOPT and fill the remaining knapsack using the
step 3 of our greedy algorithm(see Section 3.1).

In pseudo code our PTAS looks like

Algorithm 2

input: positive integer w1, w2, ..., wn, b for a n∈ N, ε ∈ R 0 < ε < 1.

step 1: sort w1 to wn descending on their size

step 2: j :=
⌈
1
ε

⌉
.

step 3: for every subset T ⊆ {1, 2, ..., n} with |T | ≤ j and
∑

i∈T wi ≤ b, expand T to T ∗ using
step 3 of the greedy algorithm (see Section 3.1).
save the T ∗ with the highest costT ∗ .

output: T ∗ with the maximum of costT ∗ out of all T created in the algorithm

To show that algorithm 2 is a PTAS, we need to have a look at the runtime and the
approximation rate of the algorithm.

First look at the runtime, which should be polynomial in n for a fixed ε.
Step 1 runs in O(n · log(n))

Step 2 runs in O(1)
Step 3 has to run step 3 of algorithm 1 for every subset S with |S| ≤ k. Step 3 of algorithm 1

runs in O(n). There are
∑

0≤i≤j

n
i ≤

∑
0≤i≤j

ni = nj+1−1
n−1 = O(nj) subsets to build. Each of them

can be built in time O(1), because you can construct one subset out of the subset before using
a lexicographical order.
Therefore step 3 runs in O(nj) ·O(1) ·O(n) = O(nj+1).

The Time of the algorithm is in max(O(n · log(n)), O(1), O(nj+1)) = O(nj+1) = O(nd
1
ε e.

This is a polynomial runtime for fixed ε.

Now we have to show the approximation rate is under 1 + ε.
TOPT = {i1, i2, ..., ip}, i1 ≤ i2 ≤ ... ≤ ip is an optimal solution for our instance.

If p ≤ j we found the optimal solution while searching all the subsets S with |S| ≤ j. So
we are finished here.

If p > j the algorithm 2 step 3 creates a T = {i1, i2, ..., ij} which are the indices of the j
highest weights of TOPT . If T ∗ = TOPT we are finished again.
Let be T ∗ 6= TOPT . There is a iq ∈ TOPT − T∗ such that iq is the smallest index in TOPT and
not in T ∗. It is notorious that iq > ij ≥ j and costT ∗ + wiq > b ≥ costTOPT .

Furthermore we have wiq ≤
wi1+wi2+...+wij+wiq

j+1 ≤ costTOPT
j+1 .

We then get for the approximation ratio R(I, ε) =

=
costTOPT
costT∗

≤
≤ costTOPT

costTOPT−wiq
≤

≤ costTOPT
costTOPT−(costTOPT /j+1) =

= 1
1−(1/j+1) =

= j+1
j =

= 1 + 1
j ≤

≤ 1 + ε

To get to the knapsack problem we need to introduce the ci representing the costs of the
i-th index with weight wi. We modify our SKP using a function DIST we will introduce now.
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3.3 Modifying the SKP

The DIST-function on input I = (w1, ..., wn, b, c1, ..., cn) represents the relative distance be-
tween wi and ci.

DIST (I) = max{max{ci − wi
wi

|ci ≥ wi, i ∈ {1, ..., n}},max{
wi − ci
ci
|wi ≥ ci, i ∈ {1, ..., n}}}.

costT now is the sum of all ci where i ∈ T .

For the next Algorithm we work on the KPδ. KPδ is the subset of all knapsack problems,
where DIST (I) ≤ δ. Thus we now have ci ≤ (1 + δ)wi and wi ≤ (1 + δ)ci.

We notate all (1 + ε)-approximation algorithms built according to the pseudo code of
algorithm 2 {ASKPε}ε>0.

We want to show, that for our new problem KPδ each algorithm out of {AKSPε} is an
(1 + ε+ δ(2 + δ) · (1 + ε))-approximation algorithm.
First of all let the input be sorted. This can be without loss of generality. So w1 ≥ w2 ≥ ... ≥
wn for our input I = w1, ..., wn, b, c1, ..., cn.
We declare j :=

⌈
1
ε

⌉
.

And have the TOPT = {i1, ..., il} ⊆ {1, 2, ..., n} as an optimal solution for I.
If l is less or equal to j our ASKPε has found an optimal solution for I with costTOPT .
Let l be greater than k. Then ASKPε has found an greedy extension of T = {i1, i2, ..., ik}

to T ∗ = {i1, i2, ..., ij , kj+1, ..., kj+r}.
The next step is to show that costU − costT ∗ is small relative to costU .
If we look at the sum of weights in TOPT and T ∗ we have two possibilities. We start with∑
i∈TOPT

wi−
∑
k∈T ∗

wk ≤ 0 such that the knapsack packed with our algorithm is heavier than the

optimal knapsack.
Because of ∀i : (1+δ)−1 ≤ ci

wi
≤ 1+δ 2 it is obvious that costTOPT =

∑
i∈TOPT

≤ (1+δ)∗
∑

i∈TOPT
wi

and costT ∗ =
∑
i∈T ∗

≥ (1 + δ)−1 ∗
∑
i∈T ∗

wi.

We now get the inequation
costTOPT − costT ∗
≤ (1 + δ) ·

∑
i∈TOPT

wi − (1 + δ)−1 ·
∑
k∈T ∗

wk

≤ (1 + δ) ·
∑

i∈TOPT
wi − (1 + δ)−1 ·

∑
i∈TOPT

wi

= δ·(2+δ)
1+δ ·

∑
i∈TOPT

wi

≤ δ·(2+δ)
1+δ

∑
i∈TOPT

(1 + δ)ci

= δ · (2 + δ) ·
∑

i∈TOPT
ci

= δ · (2 + δ) · costTOPT

So we get for the relative difference
costTOPT−costT∗

costTOPT
≤ δ·(2+δ)·costTOPT

costTOPT
= δ · (2 + δ).

Now we take a look on the other opportunity and set d =
∑

i∈TOPT
wi −

∑
k∈T ∗

wk > 0. We

also want to be c the costs of the part of TOPT which has the weights
∑
k∈T ∗

wk.

From the first part we know that c−costT∗
c ≤ δ ∗ (2 + δ).

2it was already mentioned in the introduction of KPδ
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It is also obvious that d < b −
∑
k∈T∗

wk ≤ wir for an r > j and ir ∈ U . We get d ≤ wir ≤

wi1+wi2+...+wir
r ≤

∑
i∈TOPT

wi

k+1 ≤ ε ·
∑

i∈TOPT
wi.

With the fact that costTOPT ≤ c+ d · (1 + δ) we get
costTOPT−costT∗

costTOPT
≤ c+d·(1+δ)−costT∗

costTOPT

≤ c−costT∗
costTOPT

+

(1+δ)·ε·
∑

i∈TOPT
wi

costTOPT

≤ δ · (2 + δ) + (1 + δ) · ε · (1 + δ) = 2δ + δ2 + ε · (1 + δ)2 = ε+ δ · (2 + δ) · (1 + ε)

3.4 PTAS for modified SKP

The algorithm 2 is stable according to the DIST -function, but not superstable. So if you have
a fixed delta your solution can get very worse because of the factor δ · (2 + δ) in the addition.
We improve our algorithm by sorting in other way. Our new PTAS sorts according to the cost
per weight and not according to the weights.

The pseudo code of our algorithm 3 looks like:

input: positive integers w1, w2, ..., wn, b, c1, ..., cn for a certain n ∈ N, ε ∈ R with 0 < ε < 1.

step 1: sort c1
w1
, c2w2

, ..., cnwn , such that ci
wi
≥ ci+1

wi+1
for i = 1, ..., n− 1.

step 2: j :=
⌈
1
ε

⌉
.

step 3: (similar to step 3 in algorithm 2 but with an other order)
for every subset T ⊆ {1, 2, ..., n} with |T | ≤ j and

∑
i∈S wi ≤ b, expand T to T ∗ running

step 3 of algorithm 1 3.1.
save the most valueable T ∗.

output: the best T ∗ build in step 3.

This algorithm has an 1 + ε · (1 + δ)2-approximation rate for a KPδ.
To show the rate we have TOPT = {i1, ..., il} ⊂ {1, ..., n} as an optimal solution.

If l ≤ j the algorithm finds an optimal solution.
If we have l > j we have a expansion T ∗ of T = {i1, i2, ..., ij}. To go further we take a look
at the sum of weights again. If the sum of weights in TOPT would be less than the sum of
weights in T ∗, then T ∗ would have a higher prize because of the order you add the indices.
So we can mark this case as not possible.

Let be d =
∑

i∈TOPT
wi −

∑
j∈T ∗

wj ≥ 0. Let c be the costs of TOPT with the weight
∑
j∈T ∗

wj .

Because of the optimality of T ∗ according to costs per weight it is obvious that c−costT ∗ ≤ 0.
The indices i1, i2, ..., ij are in TOPT and in T ∗ so the weights wi1 , ..., wij are the highest weights
in both of them. For the rest of weights of TOPT we have:d ≤ ε ∗

∑
i∈TOPT

wi. We also know

that costTOPT ≤ c+ d ∗ (1 + δ).
With this information we can calculate:

costTOPT−costT∗
costTOPT

≤ c+d·(1+δ)−costT∗
costTOPT

≤ d·(1+δ)
costTOPT

≤ ε · (1 + δ) ·

∑
i∈TOPT

wi

costTOPT

≤ ε · (1 + δ)2
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We now can see that algorithm 3 is a PTAS. The runtime is the same as before in algorithm
2 and we have an approximation linked to epsilon. We can get a solution as good as we want
it by choosing the ε and so the j in the right size.

4 Algorithms for KP

We have already seen algorithm 3 can also be used on the KPδ but to get an algorithm for
all KP we have to use some other methods. First we find an algorithm(see Section 4.1) using
dynamic programming with an exponential time that gets the best solution. After that we
will find an FPTAS(see Section 4.2) using the dynamic algorithm with a logarithmic subset
of cases. So we get a polynomial runtime.

4.1 Algorithm using dynamic programming

We will not have a long view on this algorithm. It can be looked up in many different books
and papers.

Algorithm 4

input: positive integer w1, w2, ..., wn, b, c1, ..., cn for a certain n ∈ N, ε ∈ R+.

step 1: TRIPLE(1) := {(0, 0, ∅)} ∪ {(c1, w1, {1})|if w1 ≤ b)}.

step 2: for i = 1 to n− 1do
begin Set(i+ 1) := TRIPLE(i)
for every (kw, T ) ∈ TRIPLE(i) do
if w + wi+1 ≤ b then
SET (i+ 1) := SET (i+ 1) ∪ {(k + ci+1, w + wi+1, T ∪ {i+ 1})}
SET(i+1) contains just one triple (k,w,T) for each k. This triple has the smallest weight
w.

schritt 3: search for the highest k.

output: T

We will see the time complexity in the proof of algorithm 5 being an FPTAS.

4.2 Fully polynomial time approximation scheme

The idea of our FPTAS is to create an input with a logarithmic factor smaller cost and
then search for the optimal output for our new and smaller problem. For this we use the
dynamic algorithm. This way, we get a polynomial runtime and our algorithm has a good
approximation ratio.

algorithm 5

input: positive integer w1, w2, ..., wn, b, c1, ..., cn for a certain n ∈ N, ε ∈ R+.

step 1: cmax := max{c1, ..., cn}.
t :=

⌊
log2

ε·cmax
(1+ε)·n

⌋
.

step 2: for all i ∈ {1, ..., n} : c′i :=
⌊
ci · 2−t

⌋
.

step 3: calculate the optimal T ′ for the input I ′ = w1, ..., wn, b, c
′
1, ..., c

′
n using algorithm 4.

output: T = T ′.
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To show that this really is an FPTAS we need an approximation ratio of (1 + ε).
We know, that T ′ is an optimal solution for I ′ and so it is a suitable solution for I ′. I and
I ′ do not differ in their weights. That‘s why T ′ is a possible solution for I. Let TOPT be an
optimal solution for I.

We have cost(TOPT , I) =
∑

j∈TOPT
cj ≥

∑
j∈T ′

cj = cost(T ′, I)

≥ 2t ·
∑
j∈T ′

c′j

≥ 2t ·
∑

j∈TOPT
c′j

=
∑

j∈TOPT
2t ·
⌊
cj · 2−t

⌋
≥

∑
j∈TOPT

2t(cj · 2−t − 1)

≥ (
∑

j∈TOPT
cj)− n · 2t

= cost(TOPT , I)− n · 2t
We can easily see that cost(TOPT , I) ≥ cost(T ′, I) ≥ cost(T, I − n · 2t. Transforming the

term to 0 ≤ cost(T, I)− cost(T ′, I) ≤ n · 2t
With the definition of t we can see, that its smaller than n · ε∗cmax(1+ε)·n = ε · cmax1+ε . With the

assumption of cost(T, I) ≥ cmax we get cost(T ′, I) ≥ cmax − ε · cmax1+ε . We can make this
assumption because if it would be smaller than cmax the weight of the index of cmax would
not fit into the knapsack, so we can kick of this index and his weight an cost.

With this result we get for our approximation ratio R(I) = cost(TOPT ,I)
cost(T ′,I)

= cost(T ′,I)+cost(TOPT ,I)−cost(T ′,I)
cost(T ′,I)

≤ 1 + ε·(cmax/(1+ε))
cost(T ′,I)

≤ 1 + ε·(cmax/(1+ε))
cmax−ε·ε·(cmax/(1+ε))

= 1 + ε
1+ε ·

1
1−(ε/(1+ε))

= 1 + ε
1+ε · (1 + ε) = 1 + ε

When having a look at the time complexity we can see that step 1 and step 2 run in time
O(n).
Step 3 needs the time of O(n ·OptKP (I ′)) where OptKP (I ′) is the time algorithm 4 needs to
run. We can bound this time to
OptKP (I ′)

≤
n∑
i=1

c′i

=
n∑
i=1

⌊
ci · 2

−
⌊
log2

ε·cmax
(1+ε)·n

⌋⌋
≤

n∑
i=1

(ci · 2 · (1+ε)·nε·cmax )

= 2 · (1 + ε) · ε−1 · n
cmax

·
n∑
i=1

ci

≤ 2 · (1 + ε) · ε−1 · n2 ∈ O(ε−1 · n2)
As you all can see the algorithm runs in time O(ε−1 · n3) and so is a FPTAS.
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