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1 Introduction

All information for this work is taken from M. Jiang, Y. P. Luo and S. Y. Yang's
paper �Particle Swarm Optimization - Stochastic Trajectory Analysis and Pa-
rameter Selection�.
Particle Swarm Optimization(PSO) is a heuristic for �nding the location of
global extrema in black-box problems. We start with a description of an ex-
ample for PSO by comparing the algorithm to the search of a mountain top.
Then we introduce the formal de�nition of the PSO algorithm focusing on ini-
tialization and particle movement. After these two introductory parts we start
the theoretical analysis of the parameters. Firstly we analyse several simpler
versions of PSO slowly increasing complexity and �nally we concentrate on the
algorithm which we described in the beginning using expectation and variance.
Afterwards we use the results to �gure out good parameter values to �nd the
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extrema. In the end we compare several sets of parameters using benchmark-
functions and Matlab for visualization.

2 Allegory & De�nition

First of all we want to describe PSO informally with an allegory. The PSO
algorithm can be compared to a group of nerds randomly spread in the moun-
tains. They are supposed to get close to the highest point in a limited area.
As nerds usually are not used to daylight, their only way to navigate is via the
GPS in their mobile phones. Furthermore they are allowed to use facebook to
share their position with their friends. Now they walk randomly around, always
a bit towards their personal previous best position and a bit towards the best
position on facebook. After some time, if you have access to all facebook pro�les
like the NSA, you can �gure out where the highest mountain might be.
The PSO algorithm uses this �concept� for solving black-box problems from
Rn → R. At �rst it initializes several particles. Experiments revealed some
�good� starting conditions. So the number of particles should be around 20-50
or 10 + 2

√
2 ∗ d where d = dimension of the problem. The particles themselves

are uniformly spread at random in the search space. Further adding a starting
velocity is bene�cial. This can be achieved by using uniformly random vectors
from the search space as velocity or calculating it via half of the di�erence to
an other point in the search space. Concerning the neighborhood which equals
facebook in the allegory, any graph can be used as representation for di�erent
groups of particles. For our analysis we stick to fully connected / complete
graphs.
After initialization the PSO algorithm moves the particles in discrete time steps
t. It takes each particle i and updates it's velocity Vi and it's position Pi. Fur-
ther the personal attractor Pi for each particle and the global attractor Pg are
necessary to lead the particle towards the positions it should exploit more. This
is updated in the end of each time step. The whole algorithm looks as follows:

1 f o r each p a r t i c l e i ( i =1 , . . . ,m) do { p a r t i c l e i n i t i a l . }
2 i n i t i a l i z e p o s i t i o n and v e l o c i t y
3 end f o r
4 i n i t i a l i z e neighborhood s t ru c tu r e
5 whi l e ( te rminat ion c r i t e r i a not met )
6 f o r each p a r t i c l e do { p a r t i c l e movement}
7 v e l o c i t y update
8 po s i t i o n update
9 end f o r
10 f o r each p a r t i c l e do { best update}
11 i f change then update
12 end f o r
13 end whi le

For the further analysis we concentrate on the equation describing the ve-
locity and position update. It is de�ned for each dimension d ∈ {1, ..., n} indi-
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vidually:

V d
i (t+ 1) =ω · V d

i (t) + c1r
d
1,i(t) · (P d

i (t)−Xd
i (t)) + c2r

d
2,i(t) · (P d

g (t)−Xd
i (t))

Xd
i (t+ 1) =a ·Xd

i (t) + b · V d
i (t+ 1)

where (c1, c2, ω, a, b) is the parameter tuple on which we focus our analysis. c1
describes how much a particle trusts its personal attractor. c2 is analogous for
the global attractor. ω is the inertia weight. Both remaining parameters a and b
are not necessary and should be set to 1. In addition r1,i and r2,i are independent
uniform random numbers in [0, 1]. They are necessary for the algorithm to be
not exactly predictable. Mainly the advantage is that expectation and variance
allow the PSO to explore and exploit better. We will start our theoretical
analysis with a simpler model. When analysising the swarm we usually assume
it is stagnating which means no updates to personal or global attractor occur. In
this situation the particles should converge to an area between both attractors
and exploit there.

3 Simpler Versions

To begin the analysis of PSO we start with an extremely basic model slowly
adding more and more complexity. First of all we only use a single one-
dimensional particle. Therefore we also have only one global attractor Pg = Pi.
Furthermore we remove the inertia weight ω = 1 and set a = b = 1. The latter
variables will never be necessary as they do not contribute anything. This will be
shown in the stochastic analysis. Right now we also remove the stochastic com-
ponents and random variables. As this is a big di�erence to the PSO presented
in the previous section we will rename φ1 = c1, φ2 = c2. As we will analyse
several particles soon which leads to a di�erence between global and personal
attractor. So both φ1 and φ2 remain in the following formula representing the
most simpli�ed model:

V (t+ 1) = V (t) + φ1 · (Pi(t)−X(t)) + φ2 · (Pi(t)−X(t))

3.1 Oczan & Mohan

This very simple model can be expanded by adding several particles and allowing
multiple dimensions. Oczan & Mohan created the following equation, which
is obtained by including the position equation into the simple version of the
velocity update, describing the PSO:

Xd
i (t)− (2− φ1 − φ2) ·Xd

i (t− 1) +Xd
i (t− 2) = φ1P

d
i + φ2P

d
i

3.2 Clerc & Kennedy

Clerc & Kennedy use the same simple PSO as Oczan & Mohan, but they do
not only use the personal attractor Pi, instead they add the global attractor
Pg. The second attractor is the reason φ1 and φ2 are di�erent. Within this

model particles have a stable point: P =
c1Pi+c2Pg

c1+c2
. If they are at this point,

they will stay there and not move away as long as they do not have any velocity
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remaining. They will certainly converge to this stable point, if convergence is
ensured by the prefactor χ:

χ =
2κ

2− φ−
√
φ2 − 4φ

with φ = φ1 + φ2 ≥ 4 and κ ∈ [0, 1]

resulting in the following equation describing the particles:

V d
i (t+ 1) = χ[V d

i (t) + φ1(P d
i (t)−Xd

i (t)) + φ2(P d
g (t)−Xd

i (t)]

Furthermore it is known that the smaller κ the faster particles converge to the
stable point.

3.3 van den Bergh

Van den Bergh again uses the same simple PSO. Additionally he adds inertia
weight to scale the in�uence of the previous velocity. This results in the following
recurrence relation:

Xi+1 = (1 + ω − φ1 − φ2)Xi − ωXi−1 + φ1Pi + φ2Pg

It is easy to obtain the following corresponding characteristic equation with it's
two eigenvalues: λ1 and λ2

λ2 − (1 + ω − φ1 − φ2)λ+ ω = 0

λ1/2 =
1 + ω − φ1 − φ2 ±

√
(1 + ω − φ1 − φ2)2 − 4ω

2
The PSO can now be described via the eigenvalues and certain ki which are
constants depending on φ1, φ2, λ, ω as long as the swarm stagnates. If a new
best position is discovered they can be updated:

Xt = k1 + k2λ
t
1 + k3λ

t
2

Now the particles converge if the absolute values of their eigenvalues λ1/2 are
< 1. This is what we wanted, because now the swarm will search potentially
good areas around the good areas more throughoutly. This ultimately lead to
the conditions (1 + ω − φ1 − φ2)2 < 4ω and max{|λ1|, |λ2|} < 1. The �rst one
is necessary as van den Bergh only dealt with complex eigenvalues. As long as
these conditions are ful�lled, the position of the particles converges to the stable
point:

lim
t→+∞

Xt =
φ1Pi + φ2Ps

φ1 + φ2

4 Stochastical Version

In this section we analyse the PSO we introduced in the beginning. To �nd good
parameters for the tuple (c1, c2, ω, a, b), the position of the particles is regarded
as stochastical variable of which expectation and variance can be calculated.
Starting from the particle movement equations with uniform random variables
r1,i and r2,i:

V d
i (t+ 1) =ω · V d

i (t) + c1r
d
1,i(t) · (P d

i (t)−Xd
i (t)) + c2r

d
2,i(t) · (P d

g (t)−Xd
i (t))

Xd
i (t+ 1) =a ·Xd

i (t) + b · V d
i (t+ 1)
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We begin to analyse the expectation of the particle movement during stagnation
of the swarm. In that situation it is sui�cient to only take a single particle into
account as each moves independently. Furthermore, each dimension is inde-
pendent from the others, so it is enough to work with a single one-dimensional
particle:

V (t+ 1) =ωV (t) + c1r1,t(Pi −X(t)) + c2r2,t(Pg −X(t))

X(t+ 1) =aX(t) + bV (t+ 1)

First of all we want to remove b from the equation. It is super�cial as it can
easily be expressed by c1 and c2 as those three parameters only occur in the
form c1b or c2b after the position equation is reformed to:

X(t+ 1) = (a+ bω− c1br1,t − c2br2,t)X(t)− aωX(t− 1) + c1br1,tPi + c2br2,tPg

So setting b to 1 does not reduce the generality and makes further analysis
easier.

4.1 Analysis of Expectation

In the next step we calculate the expectation of the particles' position. By doing
so we hope to �nd some criteria ensuring the convergence of particle for the
other parameters. If the particles converge during stagnation, they will exploit
potentially good areas more throughoutly. The expectation can be calculated:

EX(t+ 1) = (a+ ω − c1 + c2
2

)EX(t)− aωEX(t−1) +
c1Pi + c2Pg

2

The corresponding characteristic equation of this recurrence relation leads to
two eigenvalues:

λ2 − (a+ ω − c1 + c2
2

)λ+ aω

Similar to van den Bergh's analysis both eigenvalues' absolute value should
be smaller than zero. Thus, the following theorem is achieved: If and only if
conditions −1 < aω < 1 and 2(1 − ω)(a − 1) < c1 + c2 < 2(1 + ω)(1 + a) are
satis�ed together then {EX(t)} is guaranteed to converge to

EX =
c1Pi + c2Pg

2(1− ω)(1− a) + c1 + c2

This equals the stable point in the simple version if a = 1.

4.2 Analysis of Variance

Furthermore, the variance has to be analysed. It should not be zero as we want
the particles to explore nearby the potentially good areas. The only exception is
the one particle having the same global and local attractor. The mathematical
analysis of the variance is technically analogous to the one of the expectation:

DX(t+2) = (ψ2+DR(t)−ω)DX(t+1)−ω(ψ2−DR(t)−ω)DX(t)+ω3DX(t−1)+

R[(EX(t+1))2+ω(EX(t)2]−2E(R(t)Q(t))(EX(t−1)+ωEX(t))+DQ(t)(1+ω)

5



PSO & Parameter Selection Christoph Ströÿner

where ω = aω, v = (c1 + c2)/2, ψ = a + ω − v, R(t) = c1r1,t + c2r2,t − v,
Q(t) = c1r1,tPi + c2r2,tPg, X(t+ 1) = (ψ −R(t))X(t)− ωX(t− 1) +Q(t)
Once again one can calculate the characteristic equation and its corresponding
eigenvalues:

χ(λ) = λ3 − (ψ2 +DR(t)− ω)λ2 + ω(ψ2 −DR(t)− ω)λ− ω3

As long as c1 6= 0 or c2 6= 0 are satis�ed, the eigenvalues can be ordered, such
that 1 > λmaxD = λD1 > |ω| ≥ |λD2| ≥ |λD3| > 0 and λmaxD ∈ R. This once
again leads to a theorem: Given c1 6= 0 or c2 6= 0, if and only if −1 < ω < 1
and χ(1) > 0 are satis�ed together {DXt} is guaranteed to converge to

DX =
1
12 (1 + ω)

χ(1)[2(1− a)(1− ω) + c1 + c2]2
{2c21c22(Pg − Pi)

2+

4(a− 1)(1− ω)c1c2(c2Pg − c1Pi)(Pg − Pi) + (c21P
2
i + c22P

2
g )[2(1− a)(1− ω)]2}

and λmaxD < 1.
To put it into a nutshell, the following criteria are necessary for the swarm to
converge:

(b = 1) (1)

|aω| < 1 (2)

2(1− ω)(a− 1) < c1 + c2 < 2(1 + ω)(1 + a) (3)

c1 6= 0 or c2 6= 0, (4)

χ(1) > 0 (5)

Using these constrictions one can begin to select a parameter tuple which hope-
fully works rather well.

5 Parameter Selection

We found criteria necessary for convergence of the particles in the previous sec-
tion. Now it is time to select them as good as possible. Therefore two search
components - exploration and exploitation - have to be balanced. Exploration is
needed for the swarm to search the whole space roughly whereas exploitation is
the focusing on certain potentially good areas. λmaxD is the de�ning factor for
the swarm's exploration ability. The larger λmaxD, the more space is scanned.
This ability is the main strength of PSO whereas exploitation is more of its
weakness. Nevertheless λmaxD should be roughly around 0.9.
One parameter was not analysed before. When selecting a it is possible to
enhance the algorithm by ensuring that the particle which found the global
attractor converges to that attractor with zero variance. As Pi = Pg for this
particle the way to achieve this is to set a to 1. That way the expectation of
the variance DX becomes 0. The other criteria to be satis�ed are −1 < ω < 1,
c1 + c2 < 4(1 + ω), χ(1) > 0. Literature now suggests several di�erent values
for (c1, c2, ω) which we compare in the next section:
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ω c1 c2 λmaxD

Clerc & Kennedy 0.729 1.494 1.494 0.942
Trelea 0.6 1.7 1.7 0.889

Carlisle & Dozier 0.729 2.041 0.948 0.975
Jiang & Luo & Yang 0.715 1.7 1.7 0.995

6 Comparison

We obtained several suggestions for the parameters as shown in the table at the
end of the previous section. The next step is to compare these parameters for
the PSO heuristic by testing them on di�erent test functions. There are a few
benchmark functions often used to compare optimization algorithms:

function formula optimal position

sphere Σd
i=1x

2
i 0

griewank 1
4000Σd

i=1x
2
i −

∏d
i=1 cos( xi√

i
) + 1 0

rastrigin Σd
i=i(x

2
i − 10 cos(2πxi) + 10) 0

rosenbrock Σd−1
i=i (100(xi+1 − x2i )2 + (xi − 1)2) (1,...,1)

The following data is from the paper of Jiang, Luo and Yang. They tested each
of the parameter options on each of the functions with 20, 40 and 100 particles
for dimensions 10, 30 and 50. The results of 100 runs for each combination are
shown in the following tables. The success rate is the percentage of the particle
swarm �nding a certain ε-sphere around the maximum within the boundaries
of the search space. Success iterations is the median of the number of iterations
required to �nd the sphere. After 10000 iterations without success the algorithm
stopped:
dimension 10:

Clerc Carlisle Trelea Jiang
Ackley 0.92 0.90 0.86 0.96

Griewank 0.64 0.90 0.67 0.72
Succes Rate Rastrigin 0.68 1.00 0.96 0.88

Rosenbrock 1.00 0.99 1.00 1.00
Sphere 1.00 1.00 1.00 1.00
Ackley 84 72.5 63 108

Griewank 265 192 160.5 426
Success Iteration Rastrigin 179 161 141 201

Rosenbrock 333.5 319.5 280.5 538.5
Sphere 186 162 139 259
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dimension 50:

Clerc Carlisle Trelea Jiang
Ackley 0.77 0.60 0.82 1.00

Griewank 0.94 0.94 0.93 0.98
Succes Rate Rastrigin 0.25 0.80 0.27 0.97

Rosenbrock 0.80 0.60 0.91 0.61
Sphere 1.00 1.00 1.00 1.00
Ackley 257 214 214 471

Griewank 383 214 338 787
Success Iteration Rastrigin ∞ 262 ∞ 597

Rosenbrock 2188 3981 2205 5474
Sphere 603 332 531 1281

This shows that PSO is just an heuristic which has a problem with the curse of
dimension. So the larger the dimension the weaker the swarm's ability to �nd
the global optima.

7 Conclusion

PSO is a viable method to �nd extrema of black-box functions. Using the right
parameters for the swarm, it is possible to exploit the area around the attractors
and to slowly converge closer to the optimum. Currently swarm behaviour is
mainly analysed by testing the swarm many times, but with stochastical analysis
it is possible to �gure out how to choose the swarm's parameters for optimal
results. Nevertheless, it is not possible to ensure that the swarm �nds a good
local or even the global maximum as PSO is only an heuristic approaching the
solution sometimes.
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