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It was with great sorrow that we learned of the death of Ingo Wegener on

November 26, 2008. Ingo brought the rest of us together to work on the

problem treated here. He is greatly missed by us all. This paper is dedicated

to his memory.

We analyse a simple random process in which a token is moved in the interval A = {0, . . . , n}.
Fix a probability distribution μ over D = {1, . . . , n}. Initially, the token is placed in a random

position in A. In round t, a random step size d is chosen according to μ. If the token is

in position x � d, then it is moved to position x− d. Otherwise it stays put. Let TX
be the number of rounds until the token reaches position 0. We show tight bounds for

the expectation Eμ(TX ) of TX for varying distributions μ. More precisely, we show that

minμ{Eμ(TX )} = Θ
(
(log n)2

)
. The same bounds are proved for the analogous continuous

process, where step sizes and token positions are real values in [0, n+ 1), and one measures

the time until the token has reached a point in [0, 1). For the proofs, a novel potential

function argument is introduced. The research is motivated by the problem of approximating

the minimum of a continuous function over [0, 1] with a ‘blind’ optimization strategy.
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Computing (2006) and Combinatorics and Probability (2009).
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1. Introduction

1.1. The discrete token process

For a positive integer n, assume a probability distribution μ on a set D = {1, . . . , n} of step

sizes is given. Consider the following random process. A token moves in A = {0, . . . , n},
as follows.

• Initially, place the token in some position chosen uniformly at random from A− {0}.
• In round t: The token is at position x ∈ A. Choose an element d from D at random,

according to μ. If d � x, move the token to position x− d, otherwise leave it where

it is.

When the token has reached position 0, no further moves are possible, and we regard the

process as finished.

We consider the process X = (X0, X1, . . .), where Xt denotes the position of the token

after round t, and let TX = min{t | Xt = 0} be the number of rounds needed until position

0 is reached. A basic performance parameter for the process is Eμ(TX), the expectation

of TX for some probability distribution μ. As μ varies, the value Eμ(TX) will vary. The

probability distribution μ may be regarded as a strategy. We ask: How should μ be chosen

so that Eμ(TX) is as small as possible?

It is easy to exhibit distributions μ such that Eμ(TX) = O((log n)2). (All asymptotic

notation in this paper refers to n → ∞.) In particular, we will see that the ‘harmonic

distribution’ given by

μhar(d) =
1

d ·Hn

, for 1 � d � n, (1.1)

where Hn =
∑

1�d�n
1
d

is the nth harmonic number, satisfies Eμhar
(TX) = O((log n)2). As

the first main result of the paper, we will show that this upper bound is optimal up to

constant factors: Eμ(TX) = Ω((log n)2), for every distribution μ. For the proof of the lower

bound, we introduce a novel potential function technique, which may be useful in other

contexts.

1.2. Motivation and background: blind optimization strategies over the reals

Consider the problem of minimizing a function f : [0, 1] → R, in which the definition of

f is unknown: the only information we can gain about f is through trying sample points.

This is an instance of a black box optimization problem [3]. One algorithmic approach to

such problems is to start with an initial random point, and iteratively attempt to improve

it by making random perturbations. That is, if the current point is x ∈ [0, 1], then we

choose some step size d ∈ (0, 1] according to some probability distribution μ on (0, 1], and

move to x+ d or x− d if this is an improvement. The distribution μ may be regarded as

a ‘search strategy’. Such a search is ‘blind’ in the sense that it does not try to estimate how

close to the minimum it is and to adapt the distribution μ accordingly. The problem is

how to specify μ. Of course, an optimal distribution μ depends on details of the function f.

The difficulty the search algorithm faces is that for general functions f there is no

information about the scale of perturbations which are necessary to get close to the

minimum. This leads us to the idea that the distribution might be chosen so that it is
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scale-invariant , meaning that steps of all ‘orders of magnitude’ occur with about the same

probability. Such a distribution is described in [6]. One starts by specifying a minimum

perturbation size ε. Then one chooses the probability density function

h(t) =

{
1/pt if ε � t � 1,

0 otherwise,
(1.2)

where p = ln(1/ε) is the precision of the algorithm. (A random number distributed

according to this density function may be generated by taking d = exp(−pu), where u is

uniformly random in [0, 1].)

For general functions f, no analysis of this search strategy is known, but in experiments

on standard benchmark functions it (or higher-dimensional variants) exhibits a good

performance. (For details see [6].) From here on, we focus on the simple case where f is

unimodal , meaning that it is strictly decreasing in [0, x∗] and strictly increasing in [x∗, 1],

where x∗ is the unknown minimum point.

Remark. If one is given the information that f is unimodal, one will use other,

deterministic search strategies, which approximate the optimum up to ε within O(log(1/ε))

steps. As early as 1953, in [5], ‘Fibonacci search’ was proposed and analysed, which for a

given tolerance ε uses the optimal number of steps in a very strong sense.

The ‘blind search’ strategy from [6] can be applied to more general functions f, but

the following analysis is valid only for unimodal functions. If the distance of the current

point x from the optimum x∗ is τ � 2ε then every step size d with τ
2

� d � τ will lead to a

new point with distance at most τ/2. Thus, the probability of at least halving the distance

to x∗ in one step is at least

1

2

∫ τ

τ/2

dt

pt
=

ln 2

2p
,

which is independent of the current state x. Obviously, then, the expected number of steps

before the distance to x∗ has been halved is 2p/ ln 2. We regard the algorithm as successful

if the current point has distance smaller than 2ε from x∗. To reach this goal, the initial

distance has to be halved at most log(1/ε) times, leading to a bound of O(log(1/ε)2) for

the expected number of steps.

The question then arises whether this is the best that can be achieved. Is there perhaps

a choice for μ that works even better on unimodal functions? To investigate this question,

we first consider a discrete version of the situation. The domain of f is A = {0, . . . , n},
and f is strictly increasing, so that f takes its minimum at x∗ = 0. In this case, the search

process is very simple: the actual values of f are irrelevant; going from x to x+ d is never

an improvement. Actually, the search process is fully described by the simple random

process from Section 1.1. How long does it take to reach the optimal point 0, for a

distribution μ chosen as cleverly as possible? For μ = μhar, we will show an upper bound

of O((log n)2), with an argument very similar to that leading to the bound O(log(1/ε)2) in

the continuous case. The first main result of this paper is that the bound for the discrete

case is optimal.
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Second, we show that in the continuous case the probability density function (1.2) is

(asymptotically) optimal for approximating the minimum of f : [0, 1] → R, f(x) = x, up

to an error of 2ε. We assume ε to be given and let n = 1/2ε (assuming this to be an

integer). Blind search for the minimum until the error is smaller than 2ε is equivalent to

the following scaled token process. The start position is uniform on (0, n+ 1). In each

step a distance d is chosen at random according to some fixed probability distribution μ

on (0, n+ 1). (It is not necessary that μ has a density.) If d � x, where x is the current

token position, then the token moves to position x− d; otherwise it stays put. The process

is considered finished when the token has entered the interval (0, 2ε). As the second

main result, we prove that for all μ the expected number of steps one needs until the

token reaches a point smaller than 1 is Ω((log n)2). This translates into a lower bound

of Ω((log(1/ε)2)) for the 2ε-approximation task by blind search. The result is proved by

generalizing the potential function method used for the discrete token process.

1.3. Formalization of the discrete process as a Markov chain

For the sake of simplicity, from now on we let 〈a, b〉 denote the discrete interval {a, . . . , b}
if a and b are integers. Given a probability distribution μ on 〈1, n〉, the Markov chain

X = (X0, X1, . . .) is defined over the state space A = 〈0, n〉 as follows. The start state X0 is

uniformly distributed in A− {0} = 〈1, n〉, and the transition probabilities are defined by

Pr(Xt = x′ | Xt−1 = x) =

⎧⎪⎪⎨
⎪⎪⎩
μ(x− x′) for x′ < x,

1 −
∑

1�d�x μ(d) for x′ = x,

0 for x′ > x.

Clearly, 0 is an absorbing state. We define the random variable TX = min{t | Xt = 0}. Let

us write Eμ(TX) for the expectation of TX for a particular probability distribution μ. We

study Eμ(TX) for arbitrary μ. In particular, we wish to identify distributions μ that make

Eμ(TX) as small as possible (up to constant factors, where n is growing).

Observation 1.1. If μ(1) = 0 then Eμ(TX) = ∞.

This is because with probability 1
n

position 1 is chosen as the starting point, and from

state 1, the process will never reach 0 if μ(1) = 0. As a consequence, for the whole paper

we assume that all distributions μ that are considered satisfy

μ(1) > 0. (1.3)

It is not hard to derive a ‘closed expression’ for Eμ(TX). For x ∈ A, let F(x) = μ(〈1, x〉) =∑
1�d�x μ(d).

Proposition 1.2.

Eμ(TX) =
1

n
·

∑
1�x1<···<x��n

μ(x2 − x1) · · · μ(x� − x�−1)

F(x1) · · ·F(x�)
, (1.4)

where the sum ranges over all 2n − 1 non-empty subsets {x1, . . . , x�} of 〈1, n〉.
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Proof. Because of (1.3), we have F(x) > 0 for all x. Define the expected travel time

when starting from position x ∈ A as Tx = Eμ(T | X0 = x). Clearly, T0 = 0. Now assume

X0 = x � 1. We choose d at random from D, and perform one step. There are two cases:

with probability 1 − F(x), we have d > x, hence X1 = x, and the remaining time is Tx
again; otherwise, the remaining travel time is Tx−d. Thus,

Tx = 1 + (1 − F(x)) · Tx +
∑

1�d�x
μ(d) · Tx−d.

Solving for Tx, we get

Tx =
1

F(x)
·
(

1 +
∑

1�d�x
μ(d) · Tx−d

)
, for 1 � x � n. (1.5)

For example, we may now calculate:

T1 =
1

μ(1)
=

1

F(1)
,

T2 =
1

F(2)
+

μ(1)

F(1)F(2)
,

T3 =
1

F(3)
+

μ(2)

F(1)F(3)
+

μ(1)

F(2)F(3)
+

μ(1)2

F(1)F(2)F(3)
,

and so on. The number of terms in the sum for Tx doubles as x increases by 1. Using

(1.5) in an induction on x, it is not hard to prove that

Tx =
∑

1�x1<···<x�=x

μ(x2 − x1) · · · μ(x� − x�−1)

F(x1) · · ·F(x�)
, (1.6)

where the sum ranges over all 2x−1 subsets {x1, . . . , x�−1} of {1, . . . , x− 1}. By averaging

(1.6) over the n possible starting positions, we obtain (1.4).

We may conclude from (1.4) that Eμ(TX) is a rational function of (μ(1), . . . , μ(n)). By

compactness, there is some μ that minimizes Eμ(TX). Unfortunately, there does not seem

to be an obvious way to use Proposition 1.2 to gain information about the way in which

Eμ(TX) depends on μ or what a distribution μ that minimizes Eμ(TX) looks like.

2. Upper bound

In this section, we establish upper bounds on Eμ(TX). We split the state space A

and the set D of possible step sizes into ‘orders of magnitude’, arbitrarily choosing 2

as the base.1 Let L = 
log n�, and define Ii = [2i, 2i+1), for 0 � i < L, and IL = 〈2L, n〉.
Define

pi =
∑
d∈Ii

μ(d), for 0 � i � L.

1 Throughout, log means ‘logarithm to the base 2’.
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Clearly, then, p0 + p1 + · · · + pL = 1. To simplify notation, we do not exclude terms that

mean pi for i < 0 or i > L. Such terms are always meant to have value 0. Consider the

process X = (X0, X1, . . .). Assume t � 1 and i � 1. If Xt−1 � 2i then all numbers d ∈ Ii−1

will be accepted as steps and lead to a ‘progress’ Xt−1 −Xt of at least 2i−1. Hence

Pr(Xt � Xt−1 − 2i−1 | Xt−1 � 2i) � pi−1.

Further, if Xt−1 ∈ Ii, we need to choose step sizes from Ii−1 at most twice to get below 2i.

Since the expected waiting time for the random step sizes to hit Ii−1 twice is 2/pi−1, the

expected time process X remains in Ii is not larger than 2/pi−1.

Adding up over 1 � i � L, the expected time process X spends in the interval 〈2, x〉,
where x ∈ Ij is the starting position, is not larger than

2

pj−1
+

2

pj−2
+ · · · +

2

p1
+

2

p0
.

After the process has left I1 = 〈2, 3〉, it has reached position 0 or position 1, and the

expected time before it hits 0 is not larger than 1/p0 = 1/μ(1). Thus, the expected number

Tx of steps to get from x ∈ Ij to 0 satisfies Tx � 2
pj−1

+ 2
pj−2

+ · · · + 2
p1

+ 3
p0
. This implies

the bound

Eμ(TX) � 2

pL−1
+

2

pL−2
+ · · · +

2

p1
+

3

p0
,

for arbitrary μ. If μ has the property that

p0, . . . , pL−1 � α

L
, (2.1)

for some constant α > 0, we will have Tx � (2j + 1)(L/α) = O((log x)(log n)) = O((log n)2).

Clearly, then, Eμ(TX) = O((log n)2) as well. The simplest distribution μ with (2.1) is the

one that distributes the weight evenly on the powers of 2 below 2L:

μpow2(d) =

{
1/L if d = 2i, 0 � i < L,

0 otherwise.

Thus, Eμpow2
(TX) = O((log n)2). The ‘harmonic distribution’ defined by (1.1) satisfies pi ≈

(ln(2i+1) − ln(2i))/Hn ≈ ln 2/ ln(n) = 1/ log2 n, and we also get Ta = O((log a)(log n)) and

Eμhar
(TX) = O((log n)2).

3. A lower bound for the discrete process

We show, as the first main result of this paper, that the upper bound of Section 2 is

optimal up to a constant factor.

Theorem 3.1. Eμ(TX) = Ω((log n)2) for all distributions μ.

This theorem is proved in the remainder of this section. The distribution μ is fixed from

here on; we suppress μ in the notation. Recall that we may assume that μ(1) > 0. We
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continue to use the intervals I0, I1, I2, . . . , IL that partition 〈1, n〉, as well as the probabilities

pi, 0 � i � L.

3.1. Intuition

The basic idea for the lower bound proof is the following. For the majority of the starting

positions, the process has to traverse all intervals IL−2, IL−3, . . . , I1, I0. Consider an interval

Ii. If the process reaches interval Ii+1, then afterwards steps of size 2i+2 and larger are

rejected, and so do not help at all for crossing Ii. Steps of size from Ii+1, Ii, Ii−1, Ii−2

may be of significant help. Smaller step sizes will not help much. So, very roughly, the

expected time to traverse interval Ii completely when starting in Ii+1 will be bounded

from below by

1

pi+1 + pi + pi−1 + pi−2
, (3.1)

since 1/(pi+1 + pi + pi−1 + pi−2) is the waiting time for the first step with a ‘significant’

size to appear. If it were the case that there is a constant β > 0 with the property that for

each 0 � i < L− 1 the probability that interval Ii+1 is visited is at least β then it would

not be hard to show that the expected travel time is bounded from below by∑
1�j<L/2

β

p2j+1 + p2j + p2j−1 + p2j−2
. (3.2)

(We picked out only the even i = 2j to avoid double-counting.) Now the sum of the

denominators in the sum in (3.2) is at most 2, and the sum is minimal when all

denominators are equal, so the sum is bounded below by β · (L/2) · (L/2)/2 = β · L2/8,

hence the expected travel time would be Ω(L2) = Ω((log n)2).

It turns out that it is not straightforward to turn this informal argument into a

rigorous proof. First, there are (somewhat strange) distributions μ for which it is not

the case that each interval is visited with constant probability. (For example, let μ(d) =

Bd−1 · (B − 1)/(Bn − 1), for a large base B like B = n3. Then the ‘correct’ jump directly to

0 has an overwhelming probability to be chosen first.2) Even for reasonable distributions

μ, it may happen that some intervals or even blocks of intervals are jumped over with

high probability. This means that the analysis of the cost of traversing Ii has to take into

account that this traversal might happen in one big jump starting from an interval Ij with

j much larger than i. Second, in a formal argument, the contribution of the steps of size

smaller than 2i−2 must be taken into account.

In the remainder of this section, we give a rigorous proof of the lower bound. For

this, some machinery has to be developed. The crucial components are a reformulation

of process X as another ‘interval process’, which, for as long as possible, defers decisions

about what the (randomly chosen) starting position is, and a potential function to measure

how much progress the process has made in direction to its goal, namely reaching

position 0.

2 The authors thank Uri Feige for pointing this out.
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3.2. The interval process

We change our point of view on the process X. The idea is that we do not have to fix

the starting position right at the beginning, but rather make partial decisions on what

the starting position is as the process advances. The information we hold on for step t

is a random variable Yt, with the following interpretation: if Yt > 0 then Xt is uniformly

distributed in 〈1, Yt〉; if Yt = 0 then Xt = 0.

What properties should the random process Y = (Y0, Y1, . . .) on 〈0, n〉 have to be a

proper model of the Markov chain X from Section 1.3? Clearly, Y0 = n: the starting

position is uniformly distributed in 〈1, n〉. Given y = Yt−1 ∈ 〈0, n〉, we choose a step length

d from D, according to distribution μ. Then there are two cases.

Case 1: d > y. If y � 1, this step cannot be used for any position in 〈1, y〉, thus we ‘reject’

it and let Yt = y. If y = 0, no further move is possible at all, and we also ‘reject’ and let

Yt = y = 0.

Case 2: d � y. Then y � 1, and the token is at some position in 〈1, y〉. What happens now

depends on the position of the token relative to d, for which we only have a probability

distribution. We distinguish three subcases.

Case 2(i): The position of the token is larger than d. This happens with probability

(y − d)/y. In this case we ‘accept’ the step, and now know that the token is in 〈1, y − d〉,
uniformly distributed; thus, we let Yt = y − d.

Case 2(ii): The position of the token equals d. This happens with probability 1/y. In this

case we ‘finish’ the process, and let Yt = 0.

Case 2(iii): The position of the token is smaller than d. This happens with probability d−1
y
.

In this case we ‘reject’ the step, and now know that the token is in 〈1, d− 1〉, uniformly

distributed; thus, we let Yt = d− 1.

Clearly, once state 0 is reached, all further steps are rejected via Case 1.

To summarize, the Markov chain Y = (Y0, Y1, . . .) is defined as follows. The state space

is A = 〈0, n〉 and the start state is Y0 = n. Given a state y = Yt−1, t > 0, the state Yt is

determined by the following random experiment.

(1) Pick d ∈ D according to distribution μ.

(2) If d > y, then Yt = y.

(3) If d � y, then Yt ∈ {y − d, 0, d− 1}, distributed as follows:

Yt =

⎧⎪⎪⎨
⎪⎪⎩
y − d with probability y−d

y
,

0 with probability 1
y
,

d− 1 with probability d−1
y
.

It is not hard to write down transition probabilities of the Markov chain Y :

Pr(Yt = y′ | Yt−1 = y) =

⎧⎪⎪⎨
⎪⎪⎩
F(y)/y if y > y′ = 0,

(μ(y′ + 1) + μ(y − y′)) · y′/y if y > y′ � 1,

1 − F(y) if y = y′.

(3.3)
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We are interested in the random variable TY = min{t | Yt = 0}, which counts the

number of steps until Y reaches its absorbing state 0.

The idea to derive the interval process in the way described above is not new. For

example, Aspnes, Diamadi and Shah [1, Section 4.2.2], analyse a so-called aggregate chain

that is derived from a Markov chain in the same way as we derived our interval process

from the token process. They prove that both processes have the same expected running

time. In our case, essentially the same proof yields the following lemma.

Lemma 3.2. E(TX) = E(TY ).

For completeness, we provide a full proof of this lemma in Section 4.2, where we deal

with the continuous case.

3.3. Potential function: definition and application

We introduce a potential function Φ on the state space A = 〈0, n〉 to bound the progress

of process Y . Our main lemma states that for any y ∈ A, for a random transition from

Yt−1 = y to Yt, the expected loss in potential is at most constant (i.e., E(Φ(Yt−1) − Φ(Yt) |
Yt−1 = y) = O(1)). We will see that this implies that E(TY ) = Ω(Φ(Y0)). Since the potential

function will satisfy Φ(Y0) = Ω((log n)2), the lower bound follows.

We start by trying to give intuition for the definition. A rough approximation to the

potential function we use would be the following. For interval Ii there is a term

ψi =
1∑

0�j�L pj · c|j−i| , (3.4)

for some constant c with 1
2
< c < 1, e.g., c = 1/

√
2. For later use we note that∑

1�i<L
ψ−1
i =

∑
1�i<L

∑
0�j�L

pj · c|j−i| =
∑

0�j�L
pj

∑
1�i<L

c|j−i| = O(1), (3.5)

since
∑

0�j�L pj = 1 and
∑

k�0 c
k = 1

1−c . Extending the idea from (3.1), the term ψi tries

to give a rough lower bound for the expected number of steps needed to cross Ii in the

following sense. The summands pj · c|j−i| reflect the fact that step sizes that are close to Ii
will be very helpful for crossing Ii, and step sizes far away from Ii might help a little in

crossing Ii, but they do so only to a small extent (j � i) or with small probability (j � i).

The idea is then to arrange that a state y ∈ Ik has potential about

Ψk =
∑
i�k

ψi. (3.6)

It turns out that analysing process Y on the basis of a potential function that refers

to the intervals Ii is possible but leads to messy calculations and numerous cases. The

calculations become cleaner if one avoids the use of the intervals in the definition and in

applying the potential function. The following definition derives from (3.4) and (3.6) by

splitting up the summands ψi into contributions from all positions a ∈ Ii and smoothing

out the factors c|j−i| = 2|j−i|/2, for a ∈ Ii and d ∈ Ij , into 2−| log a−log d|/2, which is
√
a/d for
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a � d and
√
d/a for d � a. This leads to the following.3 Assumption (1.3) guarantees that

in the formulas to follow all denominators are non-zero.

Definition. For 1 � a � n, let

σa =
∑

1�d�n
μ(d) · 2−| log a−log d|/2 =

∑
1�d�a

μ(d)

√
d

a
+

∑
a<d�n

μ(d)

√
a

d

and ϕa = 1/(aσa). For 0 � y � n define Φ(y) =
∑

1�a�y ϕa. The random variable Φt,

t = 0, 1, 2, . . . , is defined by Φt = Φ(Yt).

We note some easy observations and one fundamental fact about Φt, t � 0.

Lemma 3.3.

(a) Φt, t � 0, is non-increasing for t increasing.

(b) Φt = 0 ⇔ Yt = 0.

(c) Φ0 = Ω((log n)2) (Φ0 is a number that depends on n and μ).

Proof. (a) is clear since Yt, t � 0, is non-increasing and the terms ϕa are positive. (b)

is obvious since Φt = 0 if and only if Φ(Yt) is the empty sum, which is the case if and

only if Yt = 0. We prove (c). In this proof we use the intervals Ii and the probabilities pi,

0 � i � L, from Section 2. We use the notation i(a) = 
log a� = max{i | 2i � a}. We start

with finding an upper bound for σa by grouping the summands in σa according to the

intervals. Let c = 1/
√

2. Then

σa =
∑

1�d�n
μ(d) · 2−| log a−log d|/2

�
∑
j�i(a)

∑
d∈Ij

μ(d) · 2(j+1−i(a))/2 +
∑
j>i(a)

∑
d∈Ij

μ(d) · 2(i(a)+1−j)/2

=
∑
j�i(a)

pj · 2(j+1−i(a))/2 +
∑
j>i(a)

pj · 2(i(a)+1−j)/2 = 2c ·
( ∑

0�j�L
pj · c|j−i(a)|

)
.

Hence ∑
a∈Ii

ϕa =
∑
a∈Ii

1

aσa
� 2i

2c · 2i+1 ·
(∑

0�j�L pj · c|j−i|
) =

ψi

4c
,

with ψi from (3.4). Thus,

Φ0 �
∑

0�i<L

ψi

4c
. (3.7)

Let ui = 4c/ψi be the reciprocal of the summand for i in (3.7), 0 � i < L. From (3.5) we

read off that
∑

0�i<L ui � k, for some constant k. Now
∑

0�i<L
1
ui

with
∑

0�i<L ui � k is

3 Whenever in the following we use letters a, b, d, the range 〈1, n〉 is implicitly understood.
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minimal if all ui are equal to k/L. Together with (3.7) this entails Φ0 � L · (L/k) = L2/k =

Ω((log n)2), which proves part (c) of Lemma 3.3.

The crucial step in the lower bound proof is to show that the progress made by process

Y in one step, measured in terms of the potential, is bounded.

Lemma 3.4 (Main Lemma). There is a constant C such that, for 0 � y � n, we have

E(Φt−1 − Φt | Yt−1 = y) � C.

The proof of Lemma 3.4 is the core of the analysis. It will be given in Section 3.4.

To prove Theorem 3.1, we need the following lemma, which is stated and proved (as

Lemma 12) in [4]. (It is a one-sided variant of Wald’s identity.)

Lemma 3.5. Let R1, R2, . . . denote random variables with bounded range, let g > 0, and

let S = min{t | R1 + · · · + Rt � g}. If E(S) < ∞ and E(Rt | S � t) � C for all t ∈ N, then

E(S) � g/C .

Proof of Theorem 3.1. Since Yt = 0 if and only if Φt = 0 (Lemma 3.3(b)), the step

count TΦ = min{t | Φt = 0} for the potential reaching 0 satisfies TΦ = TY . Thus, to

prove Theorem 3.1, it is sufficient to show that E(TΦ) = Ω((log n)2). For this, we let

Rt = Φt−1 − Φt, the progress made in step t in terms of the potential. By Lemma 3.4,

E(Rt | Yt−1 = y) � C , for all y � 1, and hence

E(Rt | TY � t) = E(Rt | Yt−1 > 0) � C.

Observe that R1 + · · · + Rt = Φ0 − Φt and hence TΦ = min{t | R1 + · · · + Rt � Φ0}. Apply-

ing Lemma 3.5, and combining with Lemma 3.3, we get that E(TΦ) � Φ0/C = Ω((log n)2),

which proves Theorem 3.1.

The only missing part to fill in is the proof of Lemma 3.4.

3.4. Proof of the Main Lemma (Lemma 3.4)

Fix y ∈ 〈1, n〉, and assume Yt−1 = y. Our aim is to show that the ‘expected potential loss’

is constant, i.e., that

E(Φt − Φt−1 | Yt−1 = y) = O(1).

Clearly, E(Φt−1 − Φt | Yt−1 = y) =
∑

0�y′�y Δ(y, y′), where

Δ(y, y′) =
(
Φ(y) − Φ(y′)

)
· Pr(Yt = y′ | Yt−1 = y). (3.8)

We show that
∑

0�y′�y Δ(y, y′) is bounded by a constant, by considering Δ(y, y), Δ(y, 0),

and
∑

1�y′<y Δ(y, y′) separately.

For y′ = y, the potential difference Φ(y) − Φ(y′) is 0, and thus

Δ(y, y) = 0. (3.9)
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Bounding Δ(y, 0). According to (3.3), a step from Yt−1 = y to Yt = 0 has probability

F(y)/y. Since Φ(0) = 0, the potential difference is Φ(y). Thus, we obtain

Δ(y, 0) =
1

y
·
(∑
d�y

μ(d)

)
·
(∑
a�y

ϕa

)

=
1

y
·
∑
a�y

∑
d�y

μ(d)

∑
b�a

μ(b)
√
ab+

∑
a<b�n

μ(b)a3/2/
√
b

� 1

y
·
∑
a�y

δ(a), where δ(a) =

∑
b�y

μ(b)

∑
b�a

μ(b)
√
ab+

∑
a<b�y

μ(b)a3/2/
√
b
. (3.10)

We bound δ(a). For b � a and μ(b) �= 0, the quotient of the summands in the numerator

and denominator of δ(a) that correspond to b is 1/
√
ab � √

a/a � √
y/a. For a < b and

μ(b) �= 0, the quotient is
√
b/a3/2 � √

y/a. Thus, factoring out
√
y/a from the sum in the

denominator of δ(a), and using μ(1) > 0, we obtain δ(a) � √
y/a. This implies (recall that

Hy =
∑

1�a�y
1
a
):

Δ(y, 0) � 1

y
·
∑
a�y

√
y/a � Hy√

y
� ln(y) + 1

√
y

< 2. (3.11)

Bounding
∑

1�y′<y Δ(y, y′). Assume 1 � y′ < y. According to (3.3),

Pr(Yt = y′ | Yt−1 = y) =
y′

y
·
(
μ(y′ + 1) + μ(y − y′)

)
.

The potential difference is Φ(y) − Φ(y′) =
∑

y′<a�y ϕa. Thus we have

∑
1�y′<y

Δ(y, y′) =
∑

1�y′<y

∑
y′<a�y

ϕa · y
′

y
·
(
μ(y′ + 1) + μ(y − y′)

)

=
∑

1<a�y

∑
1�y′<a

ϕa · y
′

y
·
(
μ(y′ + 1) + μ(y − y′)

)

=
1

y
·

∑
1<a�y

(λa + γa), (3.12)

where λa = ϕa ·
∑

1�y′<a μ(y
′ + 1) y′ and γa = ϕa ·

∑
1�y′<a μ(y − y′) y′. We bound λa and

γa separately. Observe first that

λa = ϕa ·
∑

2�y′�a
μ(y′)(y′ − 1)

�

∑
1�y′�a

μ(y′)(y′ − 1)

∑
1�b�a

μ(b) ·
√
ab+

∑
a<b�n

μ(b)a3/2/
√
b

�

∑
1�b�a

μ(b)(b− 1)

∑
1�b�a

μ(b)
√
ab

. (3.13)
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(We used the definition of ϕa, and omitted some summands in the denominator.)

Recall that μ(1) > 0, so the denominator is not zero. For each b � a we clearly have

μ(b)(b− 1) � μ(b)
√
ab, thus the sum in the numerator in (3.13) is smaller than the sum in

the denominator, and we get λa < 1.

Next, we bound γa for a � y:

γa = ϕa ·
∑

1�y′<a

μ(y − y′) y′ = ϕa ·
∑

y−a<y′<y

μ(y′) (y − y′)

=

∑
y−a<y′�a

μ(y′)(y − y′) +
∑

max{a,y−a}<y′<y

μ(y′)(y − y′)

∑
1�b�a

μ(b)
√
ab+

∑
a<b�n

μ(b)a3/2/
√
b

.

The denominator is not zero because μ(1) > 0. Hence, if μ(y′) = 0 for all y − a < y′ < y,

then γa = 0. Otherwise, by omitting some of the summands in the denominator we obtain

γa �

∑
y−a<b�a

μ(b) (y − b) +
∑

max{a,y−a}<b<y

μ(b) (y − b)

∑
y−a<b�a

μ(b)
√
ab+

∑
max{a,y−a}<b<y

μ(b)a3/2/
√
b
.

(If a � y/2, the first sum in both numerator and denominator is empty.) Now consider

the quotient of the summands for each b with μ(b) > 0. For y − a < b � a, this quotient is

μ(b) (y − b)

μ(b)
√
ab

� a− 1√
a · (y − a+ 1)

<

√
a

y − a+ 1
�

√
y

y − a+ 1
.

For max{a, y − a} < b < y, the quotient of the corresponding summands is

μ(b)(y − b)

μ(b)a3/2/
√
b

� min{a, y − a} ·
√
b

a3/2
� a · √

y

a3/2
=

√
y

a
.

Hence, γa �
√
y/(y − a+ 1) +

√
y/a. Plugging this bound on γa and the bound λa < 1

into (3.12), and using that∑
1�a�y

1√
a

= 1 +
∑

2�a�y

1√
a
< 1 +

∫ y

1

dx√
x

= 1 +
[
2
√
x
]y
1

= 1 + 2
√
y − 2 < 2

√
y,

we obtain∑
1�y′<y

Δ(y, y′) <
1

y
·

∑
1<a�y

(
1 +

√
y

a
+

√
y

y − a+ 1

)

< 1 +
1

√
y

( ∑
1<a�y

√
1

a
+

∑
1�a<y

√
1

a

)
< 1 +

2
√
y

∑
1�a�y

1√
a
< 1 +

2
√
y

· 2
√
y = 5. (3.14)

Summing up the bounds from (3.9), (3.11) and (3.14), we obtain

E(Φt−1 − Φt | Yt−1 = y) � Δ(y, 0) +
∑

1�y′<y

Δ(y, y′) + Δ(y, y) < 2 + 5 + 0 = 7.

Thus Lemma 3.4 is proved.
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4. The continuous process

We now analyse a continuous version of the process, where token positions and step sizes

are real numbers. All definitions and proofs to follow are generalizations of the definitions

and proofs for the discrete process.

We use the standard notation ([a, b], [a, b), etc.) to denote intervals over the reals.

The continuous random process X = (X0, X1, . . .) is defined as follows. Let μ be some

probability distribution over (0, n+ 1). At the beginning, the token is placed in a point

X0 chosen uniformly at random from [1, n+ 1). Assume that after t− 1 steps the token

is in position Xt−1 ∈ [1, n+ 1). We pick a step size d according to probability distribution

μ, and proceed as follows.

• If Xt−1 < d, then the token stays put and Xt = Xt−1.

• If Xt−1 ∈ [d, d+ 1), then the process is finished, denoted by Xt = 0.

• If Xt−1 � d+ 1, then the token moves to position Xt = Xt−1 − d.

The process ends when state 0 is reached. Our goal is to prove a lower bound on the

expectation of the random variable TX = min{t | Xt = 0}.
Note that if μ

(
(0, 2)

)
= 0, then E(TX) = ∞, because otherwise with positive probability

the initial token position is in [1, 2), and the token cannot be moved. Therefore, we assume

in the following that μ
(
(0, 2)

)
> 0.

Note that the continuous token process is a generalization of the discrete token process;

therefore we use the same symbol X for both. The following is the second main result of

this paper, which settles the question for optimal blind search strategies over real intervals.

Theorem 4.1. Let X be the continuous process on [0, n+ 1) as described. Then Eμ(TX) =

Ω((log n)2) for all distributions μ.

In the remainder of this section we prove Theorem 4.1. For this, we first generalize

the definition of the discrete interval process to a continuous version, and then apply a

potential function argument as before.

4.1. The continuous interval process

As in the discrete case we describe an interval process Y = (Y0, Y1, . . .) that is ‘equivalent’

to the token process. The state space is B = [0, n]. State y ∈ B − {0} corresponds to a

situation in which the token is uniformly distributed over the interval [1, y + 1), and state

0 corresponds to a situation in which the token is at 0, i.e., the token process is finished.

The start state Y0 is n. Now consider a state y ∈ B and let Yt−1 = y. The next state,

Yt = y′, is determined by a random experiment. The idea is the following.

Suppose that the token is uniformly distributed in Jy := [1, y + 1) and step size d is

picked at random. We split the interval Jy into three parts:

I1 = [1, d), I2 = [d, d+ 1) and I3 = [d+ 1, y + 1).

(If a � b, then [a, b) denotes the empty interval.) Suppose the token is somewhere in I1.

Then applying step size d cannot move the token, so it remains in I1, uniformly distributed.

If the token is in I2, then the step of length d moves it to 0. Finally, if the token is in I3,
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applying step size d moves it to a position in [1, y − d+ 1), again maintaining uniformity.

The idea is to first randomly pick one of the intervals I1, I2, I3, thus deciding in which of

these intervals x is located. We then ‘apply’ step size d, and choose y′ as either d, 0, or

y − d, which corresponds to the new distribution of the token, given that it was in I1, I2,

or I3, respectively.

If the token is uniformly distributed in Jy , it is located in Iγ , γ ∈ {1, 2, 3}, with probability

p
(γ)
y,d, where

p
(1)
y,d =

|I1 ∩ Jy|
|Jy|

= max

{
0,
d− 1

y

}
,

p
(2)
y,d =

|I2 ∩ Jy|
|Jy|

=
min{y + 1, d+ 1} − max{1, d}

y
, and

p
(3)
y,d =

|I3 ∩ Jy|
|Jy|

= max

{
0,
y − d

y

}
.

To summarize, we obtain Yt = y′ by the following random experiment.

(1) Pick d at random according to distribution μ.

(2) Pick γ ∈ {1, 2, 3} at random, such that Pr(γ = j) = p
(j)
y,d for j = 1, 2, 3.

(3) Let

Yt = y′ =

⎧⎪⎪⎨
⎪⎪⎩
d− 1 if γ = 1,

0 if γ = 2,

y − d if γ = 3.

The interval process ends when it enters state 0. Thus, we are interested in the random

variable TY = min{t | Yt = 0}.

4.2. Equivalence of the token process and the interval process

We first show that our construction of Yt matches the intuitive connection between Xt

and Yt. The proof of the following lemma is a straightforward extension to the continuous

case of the proof of Lemma 4 in [2].

Lemma 4.2. Let Xt and Yt be the random variables as defined above (both using the

same distribution μ). Let Zt be chosen uniformly at random from [1, Yt + 1) if Yt > 0, and

otherwise let Zt = 0. Then Xt and Zt are identically distributed.

Proof. By induction on t. For t = 0 the claim is trivially true, as X0 is chosen uniformly

at random from [1, n+ 1) and Y0 = n.

Now let t > 0. Consider two random experiments leading to characterizations of the

random variables Xt and Zt, in terms of triples of random variables (Xt−1, d, Yt−1) and

(X ′, d, Yt−1), respectively. We argue that (Xt−1, d, Yt−1) and (X ′, d, Yt−1) are identically

distributed. Moreover, the characterization of Xt in terms of (Xt−1, d, Yt−1) is the same as

the characterization of Zt in terms of (X ′, d, Yt−1). This yields the desired result.

Let d be the step size used in the tth step of the token process. Since (Xt−1, d, Yt−1) and

(X ′, d, Yt−1) use the same random variable d, we may assume that d is fixed. According to
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the rules of the token game we have

d > Xt−1 ⇒ Xt = Xt−1,

d ∈ (Xt−1 − 1, Xt−1] ⇒ Xt = 0,

d � Xt−1 − 1 ⇒ Xt = Xt−1 − d, (4.1)

where by the induction hypothesis Xt−1 is uniformly distributed in [1, Yt−1 + 1), given

Yt−1.

Now we characterize Zt in terms of (X ′, d, Yt−1), where X ′ is defined as follows. Consider

the tth step of the interval process leading from state Yt−1 to Yt and using step size d.

Then Zt is uniformly distributed over [1, Yt), given Yt. The definition of X ′ depends on

the value of γ that was picked in this step as follows.

Case 1: γ = 1. We let X ′ = Zt. Hence, X ′ is uniformly distributed over [1, Yt + 1) = [1, d),

as this case implies Yt = d− 1.

Case 2: γ = 2. We pick X ′ uniformly at random from [d, d+ 1). Note that this case implies

Zt = 0.

Case 3: γ = 3. We let X ′ = Zt + d. Hence, X ′ is distributed uniformly over [d+ 1, d+ Yt +

1) = [d+ 1, Yt−1 + 1), as this case implies Yt = Yt−1 − d.

Given the probabilities for each of the three options, X ′ is uniformly distributed over

[1, Yt−1 + 1). As this is the case for any choice of d, (X ′, d, Yt−1) and (Xt, d, Yt−1) are

identically distributed. From the three cases above, we read off

X ′ < d ⇒ Zt = X ′,

d � X ′ < d+ 1 ⇒ Zt = 0,

X ′ � d+ 1 ⇒ Zt = X ′ − d.

This is the same as (4.1) with X ′ instead of Xt−1 and Zt instead of Xt. Hence, Zt and Xt

are identically distributed.

Corollary 4.3. For all probability distributions μ, we have Eμ[TX] = Eμ[TY ].

Note that Lemma 3.2 (the same statement for the discrete case) is merely a special case

of this corollary.

4.3. Definition of the potential function

We analyse the continuous interval process using almost the same potential function

argument as for the discrete process. For integers d, a ∈ {1, . . . , n}, define

μ̂(d) = μ
(
(d− 1, d+ 1) ∩ (0, n]

)
,

σ̂a =
∑

1�d�n
μ̂(d) · 2−| log a−log d|/2,

ϕ̂a =
1

aσ̂a
,
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Φ̂(y) =
∑

1�a��y�

ϕ̂a, and

Φ̂t = Φ̂(Yt).

Note that if one replaces μ̂ with μ in the definitions of σ̂a, ϕ̂a, and Φ̂(y), then one

obtains σa, ϕa and Φ(y), respectively. Moreover, μ̂ = μ for distributions μ concentrated on

{1, . . . , n}. Also, note that due to our assumption μ
(
(0, 2)

)
> 0, we have μ̂(1) > 0 and thus

σ̂a > 0 for all a ∈ {1, . . . , n}.
Hence, Lemma 3.3 also holds for Φ̂t instead of Φt.

4.4. Bounding the expected loss of potential

We analyse the expected loss of potential, given that the interval process is in state

Yt−1 = y at some point of time t− 1. More precisely, we show that Lemma 3.4 holds for

Φ̂t instead of Φt. Then Theorem 4.1 follows, with the same arguments as in the discrete

case.

Lemma 4.4. There is a constant C such that E(Φ̂t−1 − Φ̂t | Yt−1 = y) � C , for 0 � y � n.

Proof. It is immediate from the definitions that for any integer z ∈ {0, . . . , n}, all points

y′ ∈ (z − 1, z] ∩ B have the same potential Φ̂(z). For an integer z, let

Δ(y, z) =
(
Φ̂(y) − Φ̂(z)

)
· Pr

(
Yt ∈ (z − 1, z] | Yt−1 = y

)
.

Then clearly

E(Φ̂t−1 − Φ̂t | Yt−1 = y) =
∑

0�z�n
Δ(y, z) =

∑
0�z��y�

Δ(y, z).

We consider Δ(y, �y�), Δ(y, 0), and
∑

1�z<�y� Δ(y, z) separately.

Bounding Δ(y, �y�). Since Φ(y) = Φ(�y�), clearly Δ(y, �y�) = 0.

Bounding Δ(y, 0). According to the definition of the process, a step from Yt−1 = y to

Yt = 0, given that a step size d is chosen in that step, has conditional probability p(2)
y,d for

d � y and probability 0 for d > y. Since Φ̂(0) = 0, the potential difference is Φ̂(y). Thus,

using p(2)
y,d � m := min{1/y, 1}, we have

Δ(y, 0) � m · μ
(
(0, y]

)
· Φ̂(y) � m ·

⎛
⎝ ∑

1�d��y�

μ̂(d)

⎞
⎠ ·

⎛
⎝ ∑

1�a��y�

ϕ̂a

⎞
⎠ .

Following the calculations starting with (3.10) and ending with (3.11), and replacing y

with �y�, μ with μ̂, and ϕ with ϕ̂, we obtain

Δ(y, 0) � m ·
∑
a��y�

√
�y�/a � min{1/y, 1} ·

√
�y�

∑
a��y�

1/a

� min{
√

�y�/y,
√

�y�} · ln(�y�) = O(1).
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(As in the discrete version of these calculations, we use μ̂(1) > 0 and σ̂a > 0 so that the

denominators of the fractions are non-zero.)

Bounding
∑

1�z<�y� Δ(y, z). Fix y ∈ B and z ∈ {1, . . . , n} such that 0 < z < y. Suppose the

process is in state Yt−1 = y and the next step leads to some state Yt ∈ (z − 1, z], 0 < z < y.

According to the definition of the process, this event happens if and only if one of the

following two events occurs for some step size d that is used in the step from Yt−1 to Yt.

• γ = 1 was chosen and thus Yt = d− 1. Hence, d ∈ (z, z + 1], and consequently p(1)
y,d �

(d− 1)/y � z/y. It follows that this event occurs with probability at most

μ
(
(z, z + 1]

)
· z
y

� μ̂(z + 1) · z
y
.

• γ = 3 was chosen and thus Yt = y − d. Hence, d ∈
[
y − z, y − (z − 1)

)
, and con-

sequently p
(3)
y,d = (y − d)/y � z/y. It follows that this event occurs with probability

at most

μ
(
[y − z, y − z + 1)

)
· z
y

� μ̂(�y� − z) · z
y
.

If one of the two events above occurs (for fixed z), the loss of potential is Φ̂(y) − Φ̂(z) =∑
z<a��y� ϕ̂a. Thus, weighting this loss of potential with the sum of probabilities for the

events (1) and (2), and summing over all z, we obtain∑
1�z<�y�

Δ(y, z) �
∑

1�z<�y�

∑
z<a��y�

ϕ̂a · z
y

(
μ̂(z + 1) + μ̂(�y� − z)

)

< 2
∑

1�z<�y�

∑
z<a��y�

ϕ̂a · z

�y�
(
μ̂(z + 1) + μ̂(�y� − z)

)
.

(For the last inequality we used y > 1 and thus 1/y < 2/�y�.) Except for the factor of 2,

this is the same as (3.12), for μ = μ̂, ϕ = ϕ̂, and replacing �y� with y. Thus, with exactly

the same calculations as those following (3.12), we obtain
∑

1�z<�y� Δ(y, z) = O(1).
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